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Ch. 6 Process Synchronization

BSOS a0

This chapter discuss:

= Concurrent Processing.

=  Why Process Synchronization?

= Producer-Consumer Problem

= How do processes work with resources that must be shared between them?
= Atomic Operation

= The Critical-Section

= Critical section Implementation

= Evaluating synchronization algorithms of a critical section

= Different algorithms to Synchronize two Processes enter of Critical Section.
= Dangers of handling the Critical Section Problem

= Synchronization Tools

= Semaphores

* [ncorrect usages of Semaphores

= Classical Problems of Synchronization

= Monitors

= Synchronization in different OSs
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Concurrent Processing

In a single-processor with multiprocessing system, processes are
interleaved in time to yield the appearance of simultaneous execution. Even
though actual parallelism is not achieved and there is overhead in switching
between processes, interleaved executions provide major benefits in
processing efficiency and in program structures.

In a multi-processor systems, it is possible not only to interleave the
execution of processes but also to overlap them. Although it might seem
that interleaving and overlapping present different problems, both
technigues can be viewed as examples of concurrent processing, and both
present the same problems.

A ﬁ
Parallel Processing B
C q
A B C
Multiprocessing A B C A B C B
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Background- Concurrency
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* |n order to cooperate, processes must be able to:

Communicate with one another

* Passing information between two or more processes
Synchronize their actions

= Coordinating access to shared resources

= Hardware (e.g., printers, drives), Software (e.g., shared
code)

= Files (e.qg., data), Variables (e.g., shared memory
locations)

Concurrent access to shared data may result in data
Inconsistency.

Maintaining data consistency requires synchronization
mechanisms to ensure the orderly execution of cooperating
processes.

Synchronization itself requires some form of communication

4 WA agaamm
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Why Process Synchronization?

BRGS0 %m
L
Wl ° Concurrent execution without Synchronization can cause two major problems:
: * Inconsistency due to Race Condition
3 — When two or more cooperating processes access and manipulate the same data
o concurrently, and
u — The outcome of the execution depends on the order in which the access takes
place.
« Counter = 0; // global variable shared int x =3;
* Thread 1 does Counter++ process_1 () {
* Thread 2 does Counter-- // “at the same time” X B X +1;
. print x; }
* What is the order of values of Counter ?
) process 2 () {
- 0:1:0" X=X -1°
—0:-1:07? printx;}

« Deadlock

— When two or more waiting processes require shared resource for their continued
execution,

— But the required resources are held by other waiting processes.
« Let us return to the bounded buffer [producer-consumer] problem we presented before.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 5 mumagaaum



Producer-Consumer Problem
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« Example of Cooperating processes that need to be synchronized:

— Producer process produces information that is consumed by a
Consumer process.

 We need buffer of items that can be filled by producer and emptied
by consumer.

— Unbounded-buffer places no practical limit on the size of the
buffer. Consumer may wait, producer never waits.

FoLr L@@

— Bounded-buffer assumes that there is a fixed buffer size.
Consumer waits for new item, producer waits if buffer is full.

— Producer and Consumer must be synchronized. How?
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Producer-Consumer Problem
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The Producer Consumer Problem

in = (in + 1) %

add element*/

counter++; }

BRGS0 %m
: A Producer process "produces” information
a| "consumed" by a Consumer process.
J
d|| item nextProduced;
: while (1) { PRODUCER
while (counter ==
BUFFER SIZE);
/*do nothing*/
buffer[in] = nextProduced;

BUFFER SIZE;

/*incremented every time we

#define BUFFER SIZE 10
typedef struct {

AN

producer

consumer

DATA data;

} item;

item buffer [BUFFER SIZE];

int in = 0; a

int out = 0;

item nextConsumed;

while (1) { CONSUMER
while (counter == 0);
/*do nothing*/
nextConsumed = buffer[out];
out = (out + 1)%

BUFFER SIZE;

/*decremented every time we
remove element*/

counter—-;

Dr. Tarek Helmy, ICS-KFUPM
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Atomic Operation
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= Definition: An atomic operation is the one that executes to
completion without any interruption or failure.

* Operations are often not “atomic”
— Example: x = x + 1 is not atomic!
- Read/Load x from memory into a register
* Increment register (x)
 Store register (x) back to memory

= An atomic operation has “an all or nothing” flavor:
= Either it executes to completion, or
= |t does not execute at all, and
= |t executes without interruptions.
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The Producer Consumer Problem
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L

L

| Although both the producer and consumer function well separately, they may not function well
5| when executed concurrently!!
J

d
o
L

we can show that by implementing the statement “counter++” in machine language as follows:
registerl = counter

registerl = registerl + 1
counter = registerl
The statement “counter--"" implemented in machine language as follows:
register2 = counter
register2 = register2 - 1
counter = register2
Where register 1, 2 are local CPU registers.
At a micro level, the following scenario could occur using this code. Assume counter is initially 5.

TO; Producer Execute registerl =counter registerl =5
T1, Producer Execute registerl=registerl+1 registerl =6
T2; Consumer Execute register2 = counter register2 =5
T3; Consumer Execute register2 =register2-1 register2 =4
T4; Producer Execute counter =registerl counter = p)
T5; Consumer Execute counter =register2 counter = } '

Dr. Tarek Helmy, ICS-KFUPM 1 mSagaamm
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- The Critical Section

* The previous example demonstrates a critical section: a memory
location, or part of the process code, or disk space which is shared by
n processes where all processes may be able to change stored
values.

 Critical sections are used frequently in an OS to protect data
structures (e.g., queues, shared variables, lists, ...)

« Problem: how to ensure that only 1 process can change the value at
a time such that all processes know the current value.

« Ciritical sections must be protected so that they are mutually exclusive
of processor access. All code within the section executes atomically

FoLr L@@

A enters critical region

/ A leaves critical region

Process A

B attempts to B enters B leaves

i
1
1
! enter critical critical region critical region ‘
: region :/ / ‘
. vl
Process B i § e :-I I d
1 I hal | I
1 ' B blocked ' ' o
T, T T, T, d
o
L
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Critical Sections
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« A critical section implementation must be:

« Correct/Mutual Execution: only 1 thread/process can
execute in the critical section at any given time.

FoLr L@@

« Efficient: Getting into and out of critical section must be
fast. Critical sections should be as short as possible.

 Concurrency control: A good implementation allows
maximum concurrency while preserving correctness.

* Flexible: A good implementation must have as few
restrictions as practically possible.
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Mutual Exclusion: Disabling Interrupts

FoLr L@@

= Endless loop

= The critical section problem could be solved simply in uni-processor
environment if:

= Interrupts are disabled while a shared variable is being accessed.

= Without interrupts no process context switching can occur and this supports
mutual exclusion.

=  Somewhat dangerous: one process can hold up the CPU forever

= Waiting for resources

= Efficiency of execution may be degraded

= Processor has limited ability to interleave programs
» Used in special-purpose systems with limited hardware
« In Multiprocessor system

Dr. Tarek Helmy, ICS-KFUPM

— Disabling interrupts on one processor will not guarantee that other
processors can be interrupted and that means mutual exclusion can not
be supported.

— Can we disable interrupts in all processors?
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Critical Section

BSOS a0

do{

entry section
critical section
exit section
reminder section
} while (TRUE)

FoLr L@@

A Critical Section environment should contain:

Entry Section Code requesting entry into the critical section.

Critical Section Code in which only one process can execute at
any one time.

Exit Section The end of the critical section, releasing or

allowing others to in.
Remainder Section Rest of the code after the critical section.

>

Entry code _ Exit code | RS code

v

Process

a
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Evaluating Critical Section Solution
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A solution to the Critical Sections (CS) must satisfy: When coming and entering CS

1. Mutual Exclusion: At most, one process/thread is
allowed to execute in a shared CS.

FoLr L@@

2. Progress: If a process/thread wishes to execute its

D exi

CS (and no other processes/threads are currently

executing in it) then the processes which are allowed _
2. Pick up aYrocess t@ enter

to decide if this process/thread gains entrance are
those not currently executing their remainder section.

3. Bounded waiting: If a process/thread i is in entry
section, then there is a bound on the number of times
that other processes/threads are allowed to enter the
critical section before process/thread i’s request is
granted.

1. P1 wants to enter CS

2. Any Pi enters its CS at most N times after P1’s
request

3. After N entries, P1 must enter its CS
4. N must be bounded

Dr. Tarek Helmy, ICS-KFUPM 15 mUagaamuwm
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Initial Attempts to Solve the CS Problem
BSaaaTh

« We restrict our attention to the algorithms that are applicable to only
two processes at a time:

« Two processes PO and P1 (also noted as Pj and Pi)
do {
entry section
critical section
exit section
reminder sectign

FoLr L@@

}while (True);

* Processes may share some common variables to synchronize their
actions.
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Algorithm 1
BSaaaTh

Uses turn variable to alternate entry into critical sections between
two processes.

Int turn;

initially turn =0
turn =1 = Pi can enter its critical section
Process Pi

do {

FoLr L@@

while (turn =) ;

critical section

turn =j;

remainder section
} while (True);

FFdfLo LD
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Algorithm 1
S agaaan

« This algorithm ensures that only one process can access the CS at a time
(mutual exclusion)

« The process of entering the critical section only tests the shared turn variable.
« Missing the other processes set just delays its entry
« It does not satisfy the progress requirement.

« The algorithm does not retain the state of each process in order to get around
this problem. It remembers only which process is allowed to enter the CS.

— If turn=0, PO is executing its remainder section and P1 is ready to enter
the CS, it is denied since turn<>1

— However, PO cannot agree to turn over the CS to P1 since it is currently
in its remainder section

FoLr L@@

— Pi, Pj, Pi, Pj... strict alternation of processes

— Pileaves, Pj busy with long I/O, Pi comes back to CS-entry;

— No one in the CS, but Pi has to wait until Pj to come to the CS.
— What if Pj never comes back to CS ??7??

FFdfLo LD
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e Algorithm 2 (saying I’m using)

— Shared Variables
 var flag: array (0..1) of Boolean;
initially flag[O] = flag[1] = false;
« flag[i] = true M Pi ready to enter its critical section

— Process Pi
repeat
flag[i] := true;
while flag[j] do no-op;
critical section
flag[i]:= false;
remainder section

FoLr L@@

until false
Can block indefinitely.... Progress requirement not met.
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Algorithm 3: Combining Alg.1 & Alg. 2

BSOS a0

« By combining the ideas behind Alg.1 and Alg. 2, we can ensure all 3
properties

« Two process solution

FoLr L@@

« Processes share both flag and turn variables

« Two shared variables:
— intturn;
* turn indicates whose turn it is to enter the critical section
— Boolean flag[2]

« flag[i] = true implies that process Pi is ready

« [Each processes sets a flag to request entry. Then each process toggles a
bit to allow the other in first.

FFdfLo LD
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Algorithm 3: Combining Alg.1 & Alg. 2

L R RSN
|
W . Uses flag variables to show requests by . Still aCCOmpliSheS mutual
4 processes wishing to enter their critical lusi
4 sections. exclusion
:  Process checks the flag of another « But does not accomplish
5 process and doesn’t enter the critical progress
section if that process wants to get in.
* Flag array|[0..1] of Boolean; TO: PO sets flag [0] = true
. 1I::I|ag[0] and Flag[1] are initialized to T1: P1 sets flag [0] = true
alse
 If Flag[i] is true then Pi is ready to enter — It both f'aQ[O] and flag[1]
the CS are true simultaneously
— Do{ | (which could occur if both
flagi] = true; processes decide to
turn=j;

access the CS at about

[*check t that Pj is fal t ready]*/ -
check to see that Pj is false [not ready] the same time) then they

while (flag[j] && turn==j);

[critical section] both wait forever.

/*if Pj is true then Pi should wait*/

flag[i] = false;
[remainder section]

} while (True);
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Algorithm 3: Combining Alg.1 & Alg. 2
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while (true) {
flag[0] = TRUE;
turn = 1;
while ( flag[1] && turn ==1);

FoLr L@@

CRITICAL SECTION

flag[0] = FALSE;

REMAINDER SECTION
}

while (true) {
flag[1] = TRUE;
turn = 0;
while ( flag[0] && turn == 0);
CRITICAL SECTION
flag[1] = FALSE;

REMAINDER SECTION

Dr. Tarek Helmy, ICS-KFUPM
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Algorithm 3 Evaluation
BSaaaTh

« Mutual Exclusion is maintained because turn will allow only
1 process access at a time

FoLr L@@

* Progress and bounded-waiting are maintained because a
process i, iIs only denied access to the CS while both turn
<> | (l.e. turn =) and flag([i] is false.

« Flag[i] will be true when the process wants to enter the CS
and if turn <> |, process i must only wait until process |
terminates with the CS (which must happen in a finite
amount of time)

FFdfLo LD
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ARLOLE Lock

« Suppose we have some sort of implementation of a lock.
— Lock.Acquire() — wait until lock is free, then grab
— Lock.Release() — Unlock, waking up anyone waiting

— These must be atomic operations — if two threads are waiting for
the lock and both see it’'s free, only one succeeds to grab the
lock

« Then, our critical section problem is easy:
lock.Acquire();

Critical section
lock.Release();

* Once again, section of code between Acquire() and Release()
called a “Critical Section”

24 WmAaaamm

FFdfLo LD



Mutual Exclusion: HW Instructions

BSOS a0

« Special machine (atomic) instructions that are available on many
systems can be used to solve the critical section problem.

— Performed in a single instruction cycle

FoLr L@@

— Not subject to intrusion from other instructions
— l.e. Reading and writing
— l.e. Reading and testing
* These instructions can do two steps indivisibly [atomically]

— Test _and set: Test a value; if it is false set it to true, else leave
it True

— Exchange: Swap the values of two variables
« Often in combination with interrupts

« Sometimes used as basis for OS synchronization mechanisms

FFdfLo LD
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Mutual Exclusion: Test & Set Instruction

The important characteristic of the T&S instruction is that it is
executed atomically. i.e. it is un-interruptible; no other process can
access the memory location until the instruction is finished. It is used
to put a “lock” on a memory word.

Implementation of Mutual Exclusion with Test-and-Set

A physical entity often called a lock byte must be used to represent
the resource.

There should be a lock byte associated with each shared
database/device.

lock byte = 0 means the resource is available, lock byte = 1 means
the resource is in use.

Before operating on a shared resource, a process must perform the
following actions:

1. Examine the value of the lock byte, (Test)

2. Setthe lock byte to 1, (Set).

3. If the original value was 1, go back to step 1.

T & S can be used to implement mutual exclusion as follows:

20 MU aaamWN
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Mutual Exclusion with Test-and-Set

When calling TestAndSet(lock)
— if lock = False before calling TestAndSet
« Itissetto True and False is returned
— if lock = True before calling TestAndSet
« Itissetto True and True is returned

Shared data:
Boolean lock = False;

Process P; do {
while (TestAndSet(lock) = True); // recourse is in use (do nothing)
-- critical section --
lock = False; // means the resource became available
-- remainder section--
} while (1);
«  This algorithm satisfies the mutual exclusion and progress requirements, but not the bounded-
waiting requirement.
« It may be sufficient for synchronization, but wasteful of processor resources.

» The blocked process doesn’t really stop executing, instead it continually loops, testing the lock
byte and waiting for it to change to 0 (Busy Waiting).

L R RSN

: Boolean TestAndSet (Boolean &lock) {
a Boolean tmp = lock;

a lock = true;

3 return tmp; }

o

L
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Mutual Exclusion with Swap

« Shared data (initialized
Boolean lock = false;

* Private data
Boolean key i = true;

» Process P;
do {

}

Dr. Tarek Helmy, ICS-KFUPM

BRGS0 %m
: (Atomically swap two variables)
. void Swap(Boolean a, Boolean b) { .
r Boolean temp = a;
d a= b,
4 b =temp; };
W - Aftercalling swap,
— a=original value of b °

— b =original value of a

to false):
[* shared variable - global */

Il if lock = 0, door open, if lock = 1, door locked

key i=true; /* not needed if swap used after CS exit */
while (key i = true)
Swap(lock, key i);
critical section /* remember key i is now false */
lock = false; /* can also use: swap(lock, key i );*/
remainder section

Declaring a global
Boolean variable lock,
initialized to false.

In addition, each process
has a local Boolean
variable key.

Mutual Exclusion: Pass if
key =T or waiting[i] = F
Progress achieved
because exit process
sends a new process in.
Bounded Waiting
achieved because each
process wait at most n-1
times
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Mutual Exclusion HW/Instructions
S a0

« Advantages

— Applicable to any number of processes on either a single
processor or multiple processors sharing main memory.

FoLr L@@

— Itis simple and therefore easy to verify

— It can be used to support multiple critical sections
« Disadvantages

— An explicit flush of the write to main memory

— Busy-waiting consumes processor time, while a process is in
CS, others should loop in the entry sections.

— Starvation is possible when a process leaves a critical section
and more than one process is waiting. \Who is next?

— Deadlock - If a low priority process has the critical region and a
higher priority process needs it, the higher priority process will
obtain the processor to wait for the critical region.

FFdfLo LD
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Busy Waiting/Spin-Lock

BSOS a0

« Main disadvantage of the mutual exclusion solutions shown in the
previous algorithms is BUSY WAITING or SPIN-LOCK.

FoLr L@@

* Busy Waiting
— Process is continuously looping in the entry section to see if it

can enter the critical section.

— Process can do nothing productive until it gets permission to
enter its critical section — wastes CPU cycles.
« Most mutual exclusion solutions result in “busy waiting/Spin-lock”
« To overcome this we can use a wait and signal mechanism.

« Spin-Lock in multiprocessor system is useful as it minimizes the

context switch process.
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Mutual Exclusion with Wait and Signal
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We can modify the lock mechanism as follows to avoid busy waiting:
(1)  Examine the value of the lock byte.
(i)  Setthe lock byte to 1
(iti)  If the original value was 1, call Wait (X).

FoLr L@@

To unlock:
()  Setlock byteto O
(i)  Call Signal (X).
Wait and Signal are primitives of the traffic controller.
« A Wait (X) sets the process’ PCB to the blocked state and links it to the lock byte X.
» Another process is then selected to run by the scheduler.
« A Signal (X) checks the blocked list associated with the lock byte X;

» If there are any processes blocked, waiting for X, one is selected and its PCB is set
to the ready state.

* Eventually, the scheduler will select this newly ““ awakened” process for execution.
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Semaphore

BSOS a0

— Operation P = wait
— Operation V = signal
« Use

FoLr L@@

acquire(S);
criticalSection();
release(S);

simultaneously modify it.

done atomically.

Dr. Tarek Helmy, ICS-KFUPM

« Synchronization operations are atomic.

— N-process critical section problems
— Synchronization problems
« Semaphore S — non-negative integer variable
Semaphore S; // initialized to 1

« Synchronization tool that does not require busy waiting.
« An abstract data type, non-negative integer

Semaphore—>P() (wait)

If sem > 0, then
decrement sem by 1
Otherwise “wait” until
sem > 0 and then
decrement

Semaphore—->V() (signal)

Increment sem by 1
Wake up a thread waiting
in P()

e R )
Valued
BT +Vv
T
T T ¥

« When one process modifies the semaphore value, no other process can

« The testing of a semaphore value and either increment or decrement it should be

32 MG aJamm
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e ——— Semaphore Implementation

« Each semaphore has an integer value and a list of associated processes

« When a process blocks/waits itself on a semaphore, it is added to a queue of
waiting processes.

« The signal operation [from other processes] on a semaphore restarts a
process from the queue and wakes the process up by the wakeup operation.

FoLr L@@

« Define a semaphore as a record
type semaphore = record
value: integer
L: list of process;
end;

Dr. Tarek Helmy, ICS-KFUPM 33 MU aaauwm
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Critical Section of N Processes
BSOS a0

« \We can use semaphores to deal with the n-process critical-section
problem.

» N processes share a semaphore mutex; // stands for mutual
exclusion) initially mutex = 1
» Process Pi:
do {
wait (mutex);
critical section
signal (mutex);
remainder section
} while (2);
« Shows use of semaphore to implement mutual exclusion.
« Semaphores can be used to solve various synchronization problems,

FoLr L@@
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Implementation
BSaaaTh

« When a process executes wait and finds the semaphore value < 0, it blocks
itself rather than looping.
wait (S):
S.value--;
If (S.value <0) {

add this process to the list;
block;

FoLr L@@

}

« Signal restarts a process using wakeup which moves a process from the wait
queue to the ready queue.

signal (S):
S.valuet++;
If (S.value <=0) {

remove a process P from the list;
wakeup(P);

}

» Dblock suspends the process that invokes it.
« wakeup(P) resumes the execution of a blocked process P.
« Block and wakeup are provided by the OS as basic system calls.
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Busy Waiting/Spin-Lock Solution

BSOS a0

 Solution: When a process executes walit and finds the
semaphore value < 0, it blocks itself rather than looping
which transfers control to the scheduler that selects another
process to execute.

FoLr L@@
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Semaphore Usage - Example

FoLr L@@
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done executing

 Goal: Force P2 to execute after P1

« Using a common semaphore synch to synchronize the operations of
the two concurrent processes:

— Wait, signal utilized to delay P2 until P1 is done
— Synch initialized to O

P1 P2

since synch =0,
must stay idle until
signal from P1
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Dangers of Handling the Critical Section Proble

L R RSN

3 m

: « Solutions to the critical section problem may lead to:
: — Starvation

: — Deadlock

« Starvation: A process never gets a resource because the resource is
allocated to other processes

— Higher priority
— Consequence of scheduling algorithm
« Frequent solution: aging

— The longer a process waits for a resource, the higher its priority until
It eventually has the highest priority among the competing processes

« Deadlock: Two or more processes are waiting indefinitely for an event
that can be caused by only one of the waiting processes.
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Deadlock and Starvation with Semaphore

Let S and Q be two semaphores initialized to 1

P, P,
wait(S); wait(Q);
wait(Q); wait(S);

M >< M
signal(S); signal(Q);
signal(Q) signal(S);

PO is waiting for P1 to execute signal (Q)
P1 is waiting for PO to execute signal (S)
Both processes are in a deadlock!

Starvation: A process may never be removed from the semaphore queue in

which it is suspended.
— LIFO queue implementation.

FFdfLo LD
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Two Types of Semaphores
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« Counting semaphore: Integer value can range over an unrestricted domain.

I.e the one described before.

FoLr L@@

« Binary semaphore: Integer value can range only between 0 and 1.
— Can be simpler to implement depending on the underlying HW support.

— Used by 2 processes to ensure only one can enter critical section.

« We can implement a counting semaphore S with binary semaphores.
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Implementing Counting Semaphore S

Can we implement a counting semaphore with binary semaphores? Yes

Data structures: binary-semaphore S1, S2;
int C:

Initialization:
S1=1
S2=0

C = initial value of the counting semaphore S
wait operation on the counting semaphore S can be implemented as:
wait(S1);
C--;
if (C<0){
signal(S1);
wait(S2);

gignaI(Sl);
signal operation on the counting semaphore S can be implemented as:
wait(S1);
C ++;
if (C<=0)
signal(S2);
else
signal(S1);

FFdfLo LD



Incorrect using of Semaphores

BSOS a0

« Although semaphores provide an effective mechanism for process synchronization,
their incorrect use can still result in timing errors that are difficult to detect.

« All processes share a semaphore variable mutex, which is initialized to 1.
« Each process must execute:
wait (mutex); before entering
critical-section
signal (mutex);
« Suppose that a process interchange the order of wait and signal, i.e:
signal (mutex);

FoLr L@@

il i Several processes may be executing
critical-section their CS simultaneously

wait (mutex); I

« Suppose that a process replaces wait with signal, i.e:

signal (mutex);

critical-section | Deadlock may occur }

signal (mutex);

« Suppose that a process omits the wait or the signal or both: in this case either mutual
exclusion is violated or a deadlock will occur.

FFdfLo LD
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: 'j f,__'léxampt_e Sefrp'épho.res ;

FoL L Ll e

this sequence.

Dr. Tarek Helmy, ICS-KFUPM

» Three processes all share a resource on which
— One draws an A
— One draws a B
— Onedraws a C

* Implement a form of synchronization so that A B C appears in
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- Example Semaphores
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No semaphores

FFdfLo LD
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ULy Example Semaphores

No semaphores

FoLr L@@

L) A
nalce

Conaition !
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- Example Semaphores

FoLr L@@

No semaphores
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Dr. Tarek Helmy, ICS-KFUPM 46 WmAwaaaum



- Example Semaphores
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No semaphores

C

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM A7 mAB'aaaum



- Example Semaphores

FoLr L@@

No semaphores
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mwa.auw | Example Semaphores
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Semaphores b =0, c =0;

think(); b.wait();

draw_A();
b.signal();

think();
draw_B();
c.signal();

FF L L L
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Example Semaphores

FoLr L@@

think();
draw_A();
b.signal();

Dr. Tarek Helmy, ICS-KFUPM

Semaphores
b=0
c=0
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- Example Semaphores

Semaphore
b=-1
c=-1

FoLr L@@

draw_A();
b.signal();

FFdfLo LD
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- Example Semaphores

d
L]

a

j Semaphore
4 b=-1

o

d c=-1

think();

b.signal();

FFdfLo LD
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- Example Semaphores

Semaphore
b=0,
c =-1;

FoLr L@@
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Example Semaphores
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Semaphore
b=0
c=-1

FoLr L@@

think();
draw_A();
b.signal();

FFdfLo LD
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Example Semaphores
BSaaaTh

FoLr L@@

Semaphore
b=0,
c=0;

think();
draw_A();

b.signal(); C

FFdfLo LD
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Classical Problems of Synchronization
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« The following problems are used for testing nearly every newly
proposed synchronization scheme:

— Bounded-Buffer Problem

FoLr L@@

 Also known as the “consumer-producer” problem
— Readers and Writers Problem

 Exclusive access to shared object/DB when modification
of the object/DB is required

— Dining-Philosophers Problem: Need to allocate several
resources among several processes without deadlock and

starvation.

FFdfLo LD
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Bounded Buffer or “Consumer-Producer”

BSOS a0

« Two processes (one producer, one consumer) share a
common, fixed-size buffer

 Producer places information into the buffer
« Consumer takes it out

FoLr L@@

Producer:

16 46 27 67

Consumer:
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Producer-Consumer Problem

BSOS a0

« Why do we need synchronization?

— The producer wants to place a new item into the buffer, but the buffer is already
full

— Consumer wants to consume an item, but the buffer is empty

FoLr L@@

« Solution:
— If the buffer is full the producer goes to sleep,
» Wakes up when the consumer has emptied one or more items.
— If buffer is empty, consumer goes to sleep,
» Wakes up when the producer has produced items
« Race conditions may occur
— Wakeup call might be lost
— Producer will eventually fill buffer and then goes to sleep
— Consumer will also sleep

— Both will sleep forever

FFdfLo LD
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- Semaphore Solution

« The structure of the producer process:
while (true) {

FoLr L@@

/[ produce an item

wait (empty); // initially empty = N
wait (mutex); // intiallly mutex =1

/I add the item to the buffer

signal (mutex); // currently mutex =0
signal (full); [/ initially full =0

FFdfLo LD
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Semaphore Solution

BSOS a0

« The structure of the consumer process

FoLr L@@

while (true) {
wait (full); /I initially full =0
wait (mutex);  //intiallly mutex =1

/I remove an item from buffer

signal (mutex); // currently mutex =0
signal (empty); // initially empty = N

/I consume the removed item
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Readers-Writers
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« Concurrent processes share a file, record, or other resources
« Some may read only (readers), some may write (writers)
« Two concurrent reads have no adverse effects

FoLr L@@

* Problems if
— Concurrent reads and writes
— Multiple writes
— May result in starvation, deadlock

« Race conditions may occur if the resource is modified by two processes
simultaneously

Solution: use semaphores:

— Semaphore mutex initialized to 1.
— Semaphore wrt initialized to 1.
— Integer readcount initialized to 0.

FFdfLo LD
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Classical Problem 2: The Readers-Writers Problem
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» Multiple readers or a single writer can use DB.

@ &

FoLr L@@

N

No problem
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Classical Problem 2: The Readers-Writers Problem

FoL L Ll e
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Readers-Writers Problem

BSOS a0

« The structure of a writer process

FoLr L@@

while (true) {
wait (wrt) ;

/[ writing is performed

signal (wrt) ;

FFdfLo LD
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Readers-Writers Problem

BSOS a0

« The structure of a reader process

while (true) {
wait (mutex) ;
readcount ++ ;
If (readcount == 1) wait (wrt) ;
signal (mutex)

FoLr L@@

// reading is performed

wait (mutex) ;

readcount - - ;

If (readcount ==0) signal (wrt) ;
signal (mutex) ;

FFdfLo LD
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T Dining Philosophers

« Five philosophers sit at a round table - thinking and eating
« Each philosopher has one chopstick
— Five chopsticks total
» A philosopher needs two chopsticks to eat
— Philosophers must share chopsticks to eat
* No interaction occurs while thinking
* Problem:
— Starvation
A philosopher may never get the two chopsticks necessary to eat
— Deadlocks
« Two neighboring philosophers may try to eat at same time
« Solution:
— Utilize semaphores to prevent deadlocks and/or starvation
— Each chopstick is represented by a semaphore
Advantages
— Guarantees that no two neighbors will attempt to eat at the same time

FoLr L@@
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~ Dining Philosophers Diagram
BSaaaTh

FoL L Ll e

PS5 P3

FF L L L
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Possible Solution

BSOS a0

«  One semaphore per philosopher
var chopstick: array [5] of semaphore; / all initialized to 1

FoLr L@@

repeat
wait(chopstick[i]);
wait(chopstick[i + 1 mod 5]); // no two neighbors will eat at the same time
eat
signal(chopstick[i]);
signal(chopstick[i + 1 mod 5]);

think

until false;

FFdfLo LD
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Outline of a Correct Solution

BSOS a0

« Deadlock might happen if all philosophers decided to eat at the
same time.

e Solution:

— A philosopher is allowed to pick up chopsticks only if both
are available.

— Allow at most four philosopher to be sitting simultaneously at
the table.

FoLr L@@

— This requires careful coordination (e.g. critical sections)
— Does not automatically resolve starvation

FFdfLo LD
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Critical Regions
BSaaaTh

 Toavoid the pervious errors of semaphores, a high-level language
synchronization construct called critical-region.

« We assume that the a process consist of some local data, and a sequential
program that can operate on the data.

 The local data can be only accessed by only the sequential program
encapsulated within the same process. (one process can not access the data
of another process)

« A shared variable v of type T, is declared as:
v:shared T
« Variable v accessed only inside statement
regionvwhen Bdo S

FoLr L@@

where B is a Boolean expression.

« While statement S is being executed, no other process can access variable v.
« Regions referring to the same shared variable exclude each other in time.

« When a process tries to execute the region statement, the Boolean expression
B is evaluated. If B is true, statement S is executed. If it is false, the process
Is delayed until B becomes true and no other process is in the region
associated with v.

FFdfLo LD
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Monitors

BSOS a0

* Another programmer-defined operators construct that allows the safe
sharing of an abstract data type among concurrent processes.

A monitor type consists of declarations of variables whose values define the
state of an instance of the type and the procedures or functions that
Implement operations on the type.

« Below is the monitor syntax.
monitor monitor-name
{ shared variable declarations
procedure body P1 (...) {

} L
procedure body P2 (...) {

FoLr L@@

} .
procedure body Pn (...) {

}
{

initialization code

}

FFdfLo LD
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epp——— Monitor Diagram
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entry queue

FFdfLo LD
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A Problem with Monitors

BSOS a0

« To allow a process to block themselves when they cannot proceed
within the monitor, a condition variable must be declared, as

condition X, v;

» The only operations that can be invoked on a condition variable is:
wait and signal.

FoLr L@@

— x.walit suspends the process until it is invoked by another
process, and

— x.signal releases exactly one process from the affiliated waiting
queue

« Only usable in a few programming languages

 Solves mutual exclusion problem only for CPUs that all have
access to common memory; not designed for distributed systems

FFdfLo LD
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S Monitor Diagram
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condition variable queues

entry queue
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Solaris 2 Synchronization
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« Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing.

FoLr L@@

 Uses adaptive mutexes for efficiency when protecting data from
short code segments.

 Uses condition variables and readers-writers locks when longer
sections of code need access to data.

« Uses turnstiles to order the list of threads waliting to acquire
either an adaptive mutex or reader-writer lock.
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. Windows Synchronization

« Uses interrupt masks to protect access to global resources on
uni-processor systems.

FoLr L@@

» Uses spinlocks on multiprocessor systems.

 Also provides dispatcher objects which may act as wither
mutexes and semaphores.

 Dispatcher objects may also provide events. An event acts
much like a condition variable.
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The End!!
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