BSaada3%

Operating Systems ICS 431

[N

Ch. 9 Virtual Memory

Dr.Tarek Helmy El-Basuny

Dr. Tarek Helmy, KFUPM-ICS

1

O a0

FFEfLo L LD HF

BSaada3%

Ch. 9 Virtual Memory (VM)

— Introducing of the Virtual Memory
— What do we want to achieve by using virtual memory?
— What are the problems do we address through virtual memory?
— How does virtual memory work?
— The meaning of Demand Paging, Thrashing concept,
— Page Fault and the Cost of Handling a Page Fault,

[N

— What are the Advantages of Virtual Memory? (less I/O time, copy on write, memory mapped files)

« Page Replacement Polices
— Local and Global replacement strategies.
— First In First Out (FIFO), (Examples with different frame numbers allocated),
— Optimal Page Replacement (OPR),
— Least Recent Used (LRU),
— Most Recent Used (MRU),
— Second Choice Page-Replacement,
— Enhanced version of Second Choice Page-Replacement,
— Page-Buffering Algorithms.
— Relationship between the allocated frames and the page fault frequency.
* Allocation of Frames to processes to minimize Thrashing
« Based on the size of the process or
« Based on the working set of the process or
« Based on the Fault frequency rate
— Other Considerations that affect Thrashing
 How different Operating Systems manage the MM and VM?

Dr. Tarek Helmy, KFUPM-ICS

O a0

FFEfLo L LD HF

B aadaah)
Virtual Memory

« With virtual memory support, the OS can address memory outside what
IS physically installed on the system.

[N

e This non-physical memory is called Virtual Memory (VM), and

— Itis implemented by using a piece of your machine’s hard disk that's
set up to emulate physical memory.

— This hard disk storage is actually a single file called a Page File, or
a Swap File.

« |f the physical memory is full and a page is urgently required:

— The OS makes room for new page by taking infrequently-used page
that's currently in physical memory and swaps it out to the
page/swap file.

« No matter how much Main Memory (MM) your system has, Windows
OS still creates and uses a page/swap file as a VM.

FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS
¥ T TELLL

BSaaaah
Virtual Memory

« With Virtual Memory (VM): the OS can execute a process that may not be
completely in the MM because the process size is lager than the MM size.

[N

« VM is the OS abstraction that gives the programmer the illusion of an address
space that may be larger than the physical memory address space.

— Means allows user programs to be larger than physical memory.

* Virtual memory: same as the MM/PM, it can be implemented using either
paging or segmentation but paging of the segments is the most common.

« VM technique is possible due to the following facts:

— Only part of the process (most frequently used pages) needs to be brought
into the MM for execution to maximize the concurrency level. i.e.

« Error/Exception handler routines are very rarely used. So, why don’t we load them
on demand to the MM/PM?

« Arrays, lists or tables are often allocated more memory than they actually need.

— An array may be declared 100 by 100 element, while it is rarely be 10 by 10
element at a time. So, the memory assigned to these arrays/tables can be used.

FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS
¥ AT TELLL

BSaada3%

How to deal with a Process’s size > Size of PM?

If the address space of the process is < the size of PM, then full load can
be done unless we want to maximize the concurrency level through
partial load.

When the address space of the process is > the available PM.
— A part of the process will be loaded into the PM/MM.
— The rest of the process will be left on VM.
— Swapping in between VM and PM will be supported through a certain
policy.
« We will investigate how does the OS support that latter?

[N
[]

Page O
Prage 1

pPage =2 —— ————

R | |

\ I ~ Bl] |
i D .

I | | |

| |

MIeErmory
map ———

"

pPage v Physical
MM rmiory

Dr. Tarek Helmy, KFUPM-ICS

FFEfLo L LD HF

BSaada3%

Advantages of Partial Loading

A process can now execute even if it is larger than the available main
memory space.

[N

— Itis even possible to use more bits for logical addresses than the bits
needed for addressing the physical memory.

* More processes can be maintained in MM and this increases both the
CPU utilization and throughput.

— Only load in some of processes' pages.
— With more processes in main memory, the concurrency level will be
more.
« Demand Paging: bring a page (not a process) into MM only when it is
needed. Rather than swapping the entire process, we use a lazy swapper
that never swap a page into MM unless that page is needed. It leads to:

— Less I/0O needed for swapping or loading
— Less memory needed
— Faster response

FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS
¥ N TTELLL

>
>

[N

>

Dr. Tarek Helmy, KFUPM-ICS

BSaada3%

Support Needed for Virtual Memory

A process needs to be broken up into pieces (pages or segments).

Pages or segments of the same process do not need to be located
contiguously in main memory.

To accommodate as many processes as possible (multiprogramming), only a
few pages of each process is maintained in MM/PM.

Memory references are dynamically translated into physical addresses at
the run time.

The OS must not swap out a piece of a process just before that piece is
needed to avoid thrashing.

» Swapper manipulates the entire processes,
» Pager is concerned with the individual pages of a process,
» We thus use pager in connection with demand page.

OS must be able to manage the movement of pages and/or segments
between virtual memory and main memory through replacement policies.

7 BOaaamn

FFEfLo L LD HF

BSaada3%

Process Execution with Existence of VM

pProcess.

[N

« The OS brings into the main memory only few pages (working set) of the

« The working set is the most frequently used pages in the process.

« We will discuss later, how the working set of the process will be set?

« Each page/segment table entry has a present bit that is set only if the

corresponding page/segment is in MM/PM.

* Aninterrupt (memory fault) is generated when the memory reference is on a

page/segment that is not present in MM/PM.

« The OS places the process in a blocking state if it has a page/segment fault.

« The OS issues a disk I/0O read request to bring the needed page/segment into

the MM.

« The OS may dispatch another process to run while the disk 1/O takes place.

« An interrupt is issued when the disk I/O completes to place the blocked process

in the ready state.

Dr. Tarek Helmy, KFUPM-ICS 3

O a0

FFEfLo L LD HF

BSaada3%

Demand Paging

When a process is to be swapped in, the 0
pager guesses which pages will be used 1
before the process is swapped out again.

« Instead of swapping in a whole process, vald-nveli
the pager brings only those necessary 1 e b'&) A,
pages. Thus decreasing the swapping time. |2 4

« How to represent fact that a page of VM is |
not yet in memory and still on a disk? i £

0
1
2
3
« With each page table entry a valid—invalid [¢ 4
5
6
7

[N
o

. 4 A

6

bit is associated
(1 = in-memory, 0 = not-in-memory)

 Page is needed = reference to valid—
invalid bit logical

memory o . .

— Invalid reference = Not-in-memory = 11

bring to memory ., -

« Initially valid—invalid but is set to O on all
entries.

» During address translation, if valid—invalid
bit in page table entry is 0 = page fault, 5
means replacement algorithm should be physical memory

i
v
i
i 7
v
|
|

4 =

page table

13

14

invoked.

Dr. Tarek Helmy, KFUPM-ICS
¥ 9 mEmUauEN

FFEfLo L LD HF

[N

BSaada3%

Steps in Handling Page Fault

When a process needs a page.
1.

The OS checks the page table of

this process to determine the

validity of the page.

« Invalid reference = Page fault
exception.

Find a free memory frame

Read desired page from disk

« Under control of 1/O controller

Changes invalid bit of page to valid

Restarts process that was
Interrupted by the exception.

. Is it easy to restart a process? Least
Recently Used

. What happens if there is no free
frame?

Dr. Tarek Helmy, KFUPM-ICS

page is on
backing store

operating
system

reference

0

load M T
0

restart | page table

instruction

reset page
fable

frap

freg frame

>

physical
memory

0

bring in
missing page

10

O a0

FFEfLo L LD HF

BSaada3%

Cost of Handling a Page Fault with VM

Checking page table, trapping an error, finding free memory frame (or
finding victim page to be swapped out) needs about 200 - 600 pus

[N
[)

« Disk seek and read takes about 10 ms (seek time is the amount of time
required for the read/write heads to move between tracks over the
surfaces of the platters)

« Memory access takes about 100 ns
« Page fault = (swap page out + swap page in + restart overhead)
« Page fault degrades the performance by approximately 100 ms!

— This doesn’t even count all the additional things that can happen
along the way.

« Better not have too many page faults!

« |f we want no more than 10 % degradation, can only have 1 page fault
for every 1,000,000 memory accesses.

« OS must do a great job of managing the movement of data between VM
and MM.

FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS
¥ 11 mmaauuw

BSaada3%

Possibility of Thrashing

« To accommodate as many processes as

[N

possible, only a few pages of each
process is maintained in MM.

 But MM may be full: when the OS brings PFO%ram

one page in, it must swap one page out

« The OS must not swap out a page of a

process just before that page is needed.

]] . program
 If it does this too often this leads to B

trashing:

— The processor spends most of its
time swapping pages in and out
rather than executing user’s

swap out

AN
E——

o] 11 201 3]

>

(X Swapin

3501 681 711

8] 91011 []
120131415

16D17Q18Q19Q

main
memory

201022123
- W

processes.

Dr. Tarek Helmy, KFUPM-ICS

12

O a0

FFEfLo L LD HF

wRaaaaw Effective Access Time & Page Fault

system.

[N

« As long as there is no page faults:

« Demand paging can have a significant effect on the performance of a

* The Effective Access Time (EAT) = Memory Access time (MA).

 Letpthe Page Fault Rate 0<p<1.0
— If p = 0 no page faults

— If p =1, every reference causes a fault

EAT = (1 — p) * Memory Access (MA)+ p *(page fault cost)

 Effective Access Time (EAT) = (1 — p) * MA+ p (page fault overhead +
swap page out overhead+swap page in overnead+restart overhead)

Example: Memory access time = 1 microsecond

* 50 % of the time the page that is being replaced has been modified and

therefore needs to be swapped out, (means p = .5).
« Page fault times =15 microsecond

EAT=(1-p)*1+p*15) microsecond

Dr. Tarek Helmy, KFUPM-ICS

13

O a0

FFEfLo L LD HF

BSaada3%

Page Replacement

Page replacement: Find a page in memory, but not really in use,

swap it out. There should be an algorithm:

[N

— Performance: we need an algorithm which will result in minimum
number of page faults. It must consider that same page may be
brought into memory several times.

« Temporal locality: Addresses that are referenced at some time Ts
will be accessed in the near future (Ts + delta time) with high
probability. Example : Execution in a loop.

« Spatial locality: Items whose addresses are near one another tend to
be referenced close together in time. Example: Accessing array
elements.

FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS
¥ 14 muuaaumw

BSaada3%

Benefits of VM

. With demand Paging: Rather than swapping the entire process,
we use a lazy swapper that never swap a page into MM unless that

page is needed: this leads to:

— Less I/O needed
— Less memory needed
— Faster response

[N

. Copy-on-Write: The basic idea of copy-on-write is to allow one or
more virtual pages of many processes (with the same contents) to
be shared by loading them into the same frame/s in the MM.

. Memory-Mapped Files: Uses VM techniques to treat file I/O as a
regular memory access.

Dr. Tarek Helmy, KFUPM-ICS

15 O a0

FFEfLo L LD HF

BSaada3%

Copy-on-Write

Copy-on-Write (COW) allows both parent and child processes to initially share
the same frame in memory for their pages of the same content.

 These pages are marked as COW. That means:

 If either the parent or the child process modified a shared page, only then
the page will be copied.

« COW allows more efficient process creation as only modified pages are copied.
* Only pages that may be modified need to be marked as COW.

« At the time of duplicating a page using COW, it is important to note where the
free frame is going to be allocated from.

* Many OSs provide a pool of free frames for such requests.
e Free frames are allocated from a pool.

« The allocated frames from the pool should be zeroed-out (erased) before being
allocated. This will be done by using a technique called zeroed-fill-on-demand.

[N
[)

P1 P2

Dr. Tarek Helmy, KFUPM-ICS
¥ 16 mMEWEauEW

FFEfLo L LD HF

BSaada3%

Memory-Mapped Files

— Typically I/O devices have slower access time than CPU and memory.

[N

access by mapping a disk block to a frame in memory.

« A file is initially read using demand paging. A page-sized portion of the file is read
from the file system into a physical frame.

« Subsequent reads/writes from/to the file are treated as ordinary memory accesses.
« Simplifies file access by treating file I/O through memory rather than read(), write()

system calls.

— A system call and disk access is required every time the file is accessed.
— This requires too much CPU involvement in I/O operations.
« Memory-mapped Files allows file /O operations to be treated as routine memory

« Also allows several processes to map the same file into the shared frames in
memory if the file is shared.

0[0[A|@N|=

P rocess A .
virtual rmermory

—_— —

—_—— — — s

| ——

|]
|]
:__-:-.- = i —O

' '

T [=3 - — —!
-

|]

I =T |- —]
(RN Ee— = |—— — |} —
— = loee— 41— | —

Physical rmermiacarys
L ———— I —
T e e -

Adisk file

L I

_ —_— —_— — —a

0\(A|@N[4

wirtuasl rme rmory

pPprocess BB

Dr. Tarek Helmy, KFUPM-ICS

17

O a0

FFEfLo L LD HF

BSaada3%

Page Replacement

« What if there’s no free frame left in the MM on a page
fault?

— Free a frame that'’s currently being used
1. Select the frame to be replaced (victim).
2. Write the victim back to disk if it has been modified.

3. Change page table to reflect that the victim is now
invalid.

4. Read the desired page into the newly freed frame

5. Change page table to reflect that the new page is
now valid.

6. Restart faulting instruction.

« Optimization: no need to write the victim back if it has
not been modified (need dirty bit per page table entry).

« Highly motivated to find a good replacement policy

— How do we choose the best victim in order to
minimize the page fault rate?

* Is there an optimal replacement algorithm? If yes,
what is it?

[N

Dr. Tarek Helmy, KFUPM-ICS

Mmmm

\

change
toinvald

L

)

reset page
o et
D page

g

Victm

physical
memary

Siap out
Vi

@W

®m

esired
agein

9.

(/4

18

O a0

FFEfLo L LD HF

BSaada3%

Replacement Policy

The OS uses some polices to select a frame in MM to be replaced when a
new page is required to be brought into the MM.

» This occurs whenever the MM is full (there is no free frame available).

[N
Y

A\

Not all frames in the MM can be selected for replacement.

» Some frames are locked (cannot be paged out): i.e.
» Frames allocated to the OS kernel,
» Frames used for data structures used in the management,
» Frames used for memory mapped files or for buffering or spooling.
» efc..

> The replacement policy should have lowest page-fault rate.

 We can evaluate the replacement policy by running it on a particular string
of memory references (reference string) and compute the number of page %
faults [needed to do the replacement] on that string. :
<
o
|
L
|

Dr. Tarek Helmy, KFUPM-ICS
¥ 19 mEEauEW

BRGS0 n

[

Global vs. Local Replacement

» The OS might decide that the set of pages considered for replacement be:
» Local: Limited to those of the process that has suffered the page fault.
» Global: The set of all pages in unlocked frames.
 Local Replacement: the OS selects for replacement a frame from the allocated

frames of the same process.

The set of pages in memory for a process is affected by the paging behavior of
only that process.

 Global Replacement (GR): OS selects for replacement a frame from the set of all
frames assigned to any process; one process can take a frame from another.

« A bad replacement choice increases the page fault rate and slow process
execution, but does not cause incorrect execution.

For a high priority process, the OS can select from either its own frames or from
the frames of any lower priority process.

This means a high priority process can increase its frames at the expenses of the
low priority process.

A process can not control its own page fault rate.

The thrashing depends not only on the paging behavior of that process but also
on the paging behavior of other process.

Dr. Tarek Helmy, KFUPM-ICS

FFEfLo L LD HF

20 O aam%

BSaada3%

Thrashing with Global Replacement

I thrashing

e

(== rece of rmalti ro rearvairrmin

CPU uiiizaion

[N

« To maximize the CPU utilization, OS increases the degree of concurrency by loading
more processes to the MM.

« With the use of global replacement, process’s page fault affects each other and this
causes propagation of thrashing.

» As the degree of multiprocessing increases the CPU utilization increase until a
maximum is reached. If the degree of multiprocessing increases further, thrashing
propagates and the CPU utilization drops sharply.

« Domino-style thrashing: if one process has page faults, evicting another process’
page, and when this process runs, it will evict yet another process’ pages, etc.

« We can limit the effects of thrashing by:

« By using local replacement: if one process starts thrashing, it can not steal frames
from another process and causes it to thrash too.

« By predicting its working set and provide a process as many frames as it needs.

 How do we the working set: by looking at how many frames a process is currently using
and predicts the future needs. We will see how in the coming slides.

LW

4
o
a

Dr. Tarek Helmy, KFUPM-ICS
¥ 21 mmuauuwW

[N

BSaada3%

The First-In-First-Out (FIFO) Policy

* First-In-First-Out
— Be fair, let every page lives in memory for about the same amount of time,
then replaces it.
» Treats page frames allocated to a process as a FIFO queue.
» When the buffer is full, the oldest page is replaced, the one at the head of
the queue.
» A frequently used page is often the oldest, so it will be repeatedly
paged out by FIFO.
» Simple to implement
» Requires only a FIFO queue.

LS I - Enqueuf;}

. - | <] . Enguewue 4 =
= L3 J— Enqueue i = | |
—~ Enmngqueus y = 3 | 3 |
i = [= | = | =
Back = Front 1] 1] L1 1 1 |

Engueus I = = L= % =]
| S | = | S | =] DrequeLe
= i, L < | '-_!Zleq,ueue == -l-'-I 5
g | = L Deqgqueus T —-T

FIFO Queue

FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS
Y 22 muaaaum

[N

BSaada3%

=

N

FIFO Page Replacement. Example-1

For the following example: the three frames are initially empty. The first three
references (7,0,1) cause page faults and are brought into these empty frames.

The next reference (2) replaces page 7 , because page 7 was come in first.

Since 0 is the next reference and 0 is already in memory, we have no fault for

this reference.

The first reference to page 3 results in page 0 being replaced, since it was the

first of three pages in the memory (0,1,2).

Because of this replacement, next reference to 0 will cause page fault.

Page 1 is then replaced by page O.

15 page faults

-

0

reference string

-

e

7

0

0

1

page frames

3 0 4 3 O
2| |2| (4| |4| 4] |0
& B [B
1] |10 |0 |O| |3]| |8

3

2

|

2

—

=t

o 1 7 0 1

B |
L. .
2| (&4 |

Dr. Tarek Helmy, KFUPM-ICS

FFEfLo L LD HF

23 O aam%

L LR
a FIFO Page Replacement: Example-2
L]
. | *E i Ciri
. |
a 1 2 3 4 2 3 4 5 3 4 ?
. |
L 2
2 1 1 3 3 = 2 4 = 3 3 5
page
fimmes £ I -
alloited 2 2 4 4 3 3 5 5 4 4
FIFD Replacement 11 page faualts
Reference String
1 2 3 4 2 3 4 5 3 4 5
3 1 1 1 4] 4 4 1 xk 4 1
Page G
3 3 3 3 3 3 3 3 3

Dr. Tarek Helmy, KFUPM-ICS

24

O a0

FFEfL L LD

BSaada3%

[N

FIFO Algorithm and the # of Frames

« To demonstrate the relation between the number of allocated
frames and the number of faults, consider the following example:

« Referencestring: 1, 2,3,4,1,2,5,1,2,3,4,5

« 3 frames (3 pages can be in memory at a time per process)

1
2

3

« 4 frames (4 pages can be in at a time)

Dr. Tarek Helmy, KFUPM-ICS

144<5

2<- 1< 3

3424

1l+5<«<4

342

4<-3

25

9 page faults

10 page faults

O a0

FFEfLo L LD HF

BSaada3%

[N

{

15

Dr. Tarek Helmy, KFUPM-ICS

FIFO lllustrating Example: Example-3

Memory Reference String

First In - First Out Page Replacement Algorithm

3 2103243210423 2104

Bl(zl[1][e]3][z][4][3][2][1][e][+][=2][5][3]1[1] [o] [+]
L [[3[Z][1]{e|[a][2]4]]3]|2][1][ol+[2][2][3][1][0]

Memory Reference String

3210324321 042321004

(3] 2f[T][0][3][2][4]4][4][1][c][@][2][3][3][1][e]]4]

L I(5[[2][1][e]{ 3)[=][2][2][+][2 {1 [a]=2][Z][3] [1][o]

UL (F][2)1][a][3][s][al[z] 4[4 1][e|[0][Z] [3][1]
Memory Reference String

3210324321 042321404

(3] 2i[1][e][o][o] [a][3][z][1][e][+][4][3][2][1] [o][4]
LIL3][2[1]{1][1][ef4(]3] =] 1][o][all4][3][2][1][o]
LIl 132 2][2][1][o] 4 [[3]| 2][1 |[1 [o][4][3] [2][1]
LI BRI [e] [«[31Z =] [e][4] 3] [2]

26

O a0

FFEfLo L LD HF

BSaada3%

FIFO lllustrating Belady’s Anomaly

16
14

[N

-
@

number of page faults

>~

N A O ®

1 2 3 4 5
number of frames

|

1. We would expect that giving more memory to a process
Improves the performance, More frames = less page

faults

2. This most unexpected result is known as Belady’s anomaly
(deviation from the common rule)

Dr. Tarek Helmy, KFUPM-ICS

27

O a0

FFEfLo L LD HF

BSaada3%

[N

Optimal Page Replacement (OPR)

be used for the longest period of time.

« Assume pages used recently will be used again soon.

— Eject out a page that will not be used for longest time

« Keep atime counter in each page table entry

— Choose page with lowest time value in the counter

— Periodically zero the counter

* In OPR algorithm/policy, the OS selects for replacement the page that will not

« This algorithm has the lowest page fault rate of all algorithms and never suffers

from Belady's anomaly.

« What'’s the problem with this algorithm?

* Policies to predict future references on the basis of past behavior.

« lItrequires a great deal of prediction and searching overhead.

Dr. Tarek Helmy, KFUPM-ICS

28

O a0

FFEfLo L LD HF

BSaada3%

OPR Example

The three frames are initially empty. The first three references (7,0,1)
cause page faults and are brought into these empty frames.

[N
H

2. The next reference (2) replaces page 7 , because page 7 will not be used
until reference 18, whereas page O will be used at 5, and page 1 at 14.

3. The reference to page 3 replaces page 1, as page 1 will be the last of the
three pages in memory to be referenced again.

4. |t makes 9 faults while FIFO made 15 faults.

5. If we consider the first 3 faults common for all algorithms then OPR is
twice good of FIFO. The page fault frequency of OPR is 50% less than
FIFO.

reference string

7 o) 1 2 0 3 0 < 2 3 o) 3 2 1 2 0 1 7 0 1

T T = =
0
1 1 3

\V}
N
N
-.\j

(@]
(@]
(2]
IN
(@]
(@)
(]

w
w

page frames

9 Page Faults

Dr. Tarek Helmy, KFUPM-ICS
4 20 mELaTEW

FFEfLo L LD HF

BSaada3%

The Least Recent Used (LRU) Page Replacement

A\

The OS replaces the page that has not been referenced for the longest time.
Least Recently Used implementation:

* On access to a page, timestamp it (Each page could be tagged in the page
table entry)

 The LRU page is the one with the smallest time value

» This would require expensive hardware and a great deal of searching
overhead.

— On a page fault, choose the one with the oldest timestamp
— What’s the motivation here?

— In practice, LRU is quite good for most programs
— Easley to be implemented by using a linked list of pages.

— Most recently used at front, least at rear and needs to update this list every
memory reference !

reterence string
7 o0 1 2 O 3 0o 4 2 3 O 3 2 1 2 0 1 7 0 1

[N

page frames

Dr. Tarek Helmy, KFUPM-ICS 12 Page Faults

FFEfLo L LD HF

BSaada3%

OPT and LRU Comparison

[N

» Example: A process of 5 pages with an OS that allocates 3 frames to the
process. What is the number of page faults if we use OPT and LRU?

» For comparison reasons, we are not counting initial page faults

when the memory is empty.

3 Page Faults

Page address

stream 2 3 2 1 5 2 4 5 3 2 5 2
2 g P 2 2 4 4 4 4 v 7] P
OPT 3 3 3 3 3 3 3 3 3 3 3
1 5 5 5 5 5 5 5 5

F F F
o 3 T 2 Y D 7 7 3 3 3 3
LRU 3 3 3 5 5 5 5 5 5 5 5
1 1 1 4 4 4 B D]

F F F F

Dr. Tarek Helmy, KFUPM-ICS

4 Page Faults

31

O a0

FFEfLo L LD HF

BSaada3%

LRU and MRU Implementation Methods

0 Counter Implementation

= Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter.

[N

= When a page needs to be changed, look at the counters to determine
which one will be selected.

— Least Frequently Used (LFU) Algorithm: Replaces page with smallest
count. Based on the argument that the page with the smallest count was
probably just brought in and has yet to be used.

— Most Frequently Used (MFU) Algorithm: Replaces page with largest count

« When we use Most Frequently Used Algorithm to replace pages, it means the page with the
largest count will be replaced. In this case if the page has been referenced many times
during the initial phase of the process then its counter will be high and will be replaced.
One way to solve this problem and to keep this page in memory is to shift the counter right
by one at regular intervals to reflect the usage. l.e. if we used 3 bites to represent the
counter, then if it has the value “TWO”, means its value in the binary system will be 010. If
we shifted the bites to the right, the new value will be 001 “ONE” means shift to right
means divide the value by TWO. By this way, the counter will be decreased periodically to
keep the page in memory if it is important to avoid its replacement.

Dr. Tarek Helmy, KFUPM-ICS
Y 22 mEWuauEW

FFEfLo L LD HF

BSaada3%

LRU and MRU Implementation Methods

« Stack implementation: Keep a stack of page numbers.

— Whenever a page is referenced: eleence siing

[N

« The top of the stack is always the most recent
used (MRU), while the bottom is the LRU

— No search for replacement

+ Reference bit
— With each page associate a reference bit, initially = 0

— When page is referenced (read/write to any byte of
the page) reference bit set to 1. .

— After some time, the OS can determine which pages sack
have been used and which have not been used by before
examining the reference bit. a

* Move it to the top 7071012

I
B
i
9|
n

stack
alter
b

27172

|

— Replace the one which has a reference bit=0 (if one
exists).

 We do not know the order, however.

Dr. Tarek Helmy, KFUPM-ICS 33

O a0

FFEfLo L LD HF

BSaada3%

Ch. 9 Virtual Memory (VM)

— Introducing of the Virtual Memory
— What do we want to achieve by using virtual memory?
— What are the problems do we address through virtual memory?
— How does virtual memory work?
— The meaning of Demand Paging, Thrashing concept,
— Page Fault and the Cost of Handling a Page Fault,

[N

— What are the Advantages of Virtual Memory? (less I/O time, copy on write, memory mapped files)

+ Page Replacement Polices
— Local and Global replacement strategies.
— First In First Out (FIFO), (Examples with different frame numbers allocated),
— Optimal Page Replacement (OPR),
— Least Recent Used (LRU),
— Most Recent Used (MRU),
— Second Choice Page-Replacement,
— Enhanced version of Second Choice Page-Replacement,
— Page-Buffering Algorithms.
— Relationship between the allocated frames and the page fault frequency.
« Allocation of Frames to processes based to minimize Thrashing
« Based on the size of the process or
« Based on the working set of the process or
» Fault frequency rate
— Other Considerations that affect Thrashing
 How different Operating Systems manage the MM and VM?

Dr. Tarek Helmy, KFUPM-ICS

34

O a0

FFEfLo L LD HF

BSaada3%

[N
[]

Second-Chance (Clock) Implementation

 Associate a reference bit per frame.
« Sets the reference bit on memory reference to a frame.

Arrange physical frames in a circle queue, with a clock hand.

« Ifthe reference bit is not set, a page hasn’t been used for a while

 On page fault (a frame is needed):

1. Advance clock hand

2. Check the reference bit,

- Ifitis =1, means the page has been used recently, clear it,
give it second chance and look for the another page.

e Ifitis=0, thisis our victim and the new page will be
inserted in that position.

* In the worst case, when all bits are set, the pointer cycles
through all of the pages, giving each page a second chance
and clear its bit.

« Can we always find a victim? If no then use FIFO.

Dr. Tarek Helmy, KFUPM-ICS

35

O a0

FFEfLo L LD HF

[N

B aadaah
Second-Chance (clock) Page-Replacement Algorithm
»Second Chance policy is an improved version of FIFO. This
IS referred to as the Clock policy.
reference pages reference pages
bits 4['\ bits /"\
[o] [©o]
v ¥
[o] [o]
RN v
Aot =
RV W
o]
Vv 2
ol _ miol
|
\ 2 v
N N
circular queue of pages circular queue of pages
(a) (b)

FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS
Y 36 WMUaaaun

BSaada3%

Enhanced 2nd-Chance Algorithm

[N

classes:

— (0, 0) neither recently used nor modified.
— (0, 1) not recently used but modified.
— (1, 0) recently used but clean.

— (1, 1) recently used but modified.

Dr. Tarek Helmy, KFUPM-ICS 37

« Associate a pair of (reference and modify) bits with each
frame, (Unix versions) this means we have four possible

O a0

FFEfLo L LD HF

BSaada3%

Page-Buffering Algorithm

 The OS preserves a pool of free frames.

[N

« When a page fault occurs, instead of waiting to look for

avictim frame using one of the replacement policies.

 The OS provides a free frame from the pool and reads the

required page into the free frame.

« This procedure allows the process to restart soon without

waiting for finding the victim page and/or writing it out.

« The OS may employ page replacement policy and when the
victim page is written out, its frame is added to the pool of

free-frames.

FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS
Y 33 WmMEWuUauLW

BSaada3%

Allocation of Frames to a Process

« How many frames should be allocated to a process?

« Shall we allocate the frames based on the size of process?

« Shall we allocate the frames based on the working Set of the process?
« Shall we allocate the frames based on the Page Fault Frequency?

« Shall we allocate the frames based on the Process Priority?

— Working set is set of pages in memory and has referenced in the last N
seconds/references (not easily known at the startup).

— Allocating a process fewer frames than its working set can gquickly lead to
more page faults.

— One way to prevent many page faults is to avoid scheduling a process unless
it is allocated enough frames for its working set.

— Allocating a process more frames than its working set will minimize the
concurrency level (minimize memory utilization).

« Page fault frequency rate measures the page fault rate of the process.
— Ifitis too low: it means the process has been given more frames than it needs.
— Ifitis too high: it means the process has been given less frames than it needs.

— If too many processes have high page fault frequency then swap out one of these
processes and reassign its frames to the faulting processes.

[N

Dr. Tarek Helmy, KFUPM-ICS
¥ 39 mMEWUauuw

FFEfLo L LD HF

BSaada3%

Frames Allocation Policy

« Shall we allocate frames equally or proportionally to processes?
* Which one is more fair and decreases the page fault frequency?

« Equal allocation: If m (100) frames and n (5) processes, then give each
m/n (20) frames. The reminder can be used as free-frame pool.

« Proportional allocation: Allocate available frames to each process
according to the size of process.

[N

s, =size of process p; m = 64
s19 =10
s> =127
m = totalnumber of frames 10
llocationf i P
a. =allocationfor p. =—+xm
i Pi =3 as — 127 64 ~ 59
137

* A proportional allocation scheme based on priorities rather than size can be used.

FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS
Y 40 mEWaaauw

BSaada3%

Working Set Model

« The set of pages that are in memory and have been

referenced in the last time interval A.

[N

« The working set model is based on the assumption of locality
(set of pages that are actively used together and local

replacement is used).

Do vou think the size of the working set Is static or varies during

the execution of the process depending on the locality of

accesses?

« |f the number of frames allocated to a process covers Iits
working set then the number of page faults will be small.

« Schedule a process only if there is enough free frames more

than or equal to its working set.

DreTargf iy diTivid '8etermine/approximate the working st Sigefs o u s

4
o
4
4
4
o
2
L]

BSaada3%

The Working Set Strategy

» The working set for a process at time t;, WS(A, t,), is the set of pages that
have been referenced in the last virtual time units t;

» Virtual time = time elapsed while the process was in execution (i.e.:
number of instructions executed).

A = working-set window = a fixed number of page references.

A is used to define the working set window, the pages that in active use.
If the page is no longer being used, it will drop from A.

WS(A, t) is an approximation of the program’s locality.

If A=10 as shown, then the working set at time t;is 5 (pages #1,2,5,6,7)
and at time t,is 2 (pages # 3,4).

[N

YV V.V V VY

page reference table
..26157777516234123444343444132344434414., ..

R R

3 L,

WS(t,) = {1,2,5,6,7) WS(t,) = {3,4}

Dr. Tarek Helmy, KFUPM-ICS
Y 2 wmwaaauwm

FFEfLo L LD HF

BSaada3%

Working-Set Model

[N
[)

We compute the working set size of process P, (WSS,)= Total number of
pages referenced in the most recent A (varies in time)

— The optimal value for A is unknown and time varying
— if A too small will not overlap the entire locality.

— Alocality is a set of pages that are actively used together.
— if A too large will overlap several localities.

— if A =0 = will overlap entire process locality.

« D =X WSS, = total demand frames from all processes.

« If D > m (total number of available frames) = Thrashing will occur because

some processes will not have enough frames.

« The OS monitors the working set of each process and allocates to that

process enough frames to cover its working set size.
« If there enough extra frames, another process can be initiated.
« |f D > m, then suspend one of the processes.

« The pages of the suspended process are written out and reallocated to
other processes. The suspended process can be restarted later.

« The problem here is keeping track of the working set which is a dynamic

one, pages may be dropped out or newly come.

Dr. Tarek Helmy, KFUPM-ICS

43

O a0

FFEfLo L LD HF

BSaada3%

The Working Set Strategy to avoid Thrashing

» The working set concept suggest the following strategy to determine the
resident set size

» Monitor the working set for each process.

» Periodically remove from the resident set of a process those pages that are
not in the working set.

» When the resident set of a process is smaller than its working set, allocate
more frames to it.

> If not enough free frames are available, suspend the process (until more
frames are available).

> 1.e.. a process may execute only if its working set is in main memory
» Practical problems with this working set strategy
» Measurement of the working set for each process is impractical

» Necessary to time stamp the referenced page at every memory
reference.

» Necessary to maintain a time-ordered queue of referenced pages for
each process.

» Solution: rather than monitor the working set, monitor the page fault rate!

[N

FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS
Y 4 wwaaauw

BSaada3%

[N

faults).

Page-Fault Frequency to avoid Thrashing

« A counter per process stores the # of faults (virtual time between page

« An upper threshold for # of faults (the virtual time) is defined .

« If the # of faults (amount of time since the last fault) is greater than the

threshold (i.e. page faults are happening at a high rate), then add new

frame to the resident set.

 Ifthe # of faults is less than a lower threshold then discard frames from

the resident set.

Dr. Tarek Helmy, KFUPM-ICS

45

O a0

FFEfLo L LD HF

[N
Y

BSaada3%

The Page-Fault Rate(PFR) Strategy to avoid Thrashing

Define an upper bound U and
lower bound L for Page Fault
Rates (PFR).

Allocate more frames to a process
if PFRis 2 U.
Allocate less frames if PFR is < L.

The resident set size should be
close to the working set size W

We suspend the process if the
PFR > U and no more free frames
are available.

Dr. Tarek Helmy, KFUPM-ICS

Pprage-—-fault rate

lower bound
\ (orease number
of frames

INcrease number
of frames

Upper bound

number of frames

46
Baaad a0k

FFEfLo L LD HF

[N

Dr. Tarek Helmy, KFUPM-ICS

BSaada3%

Other Considerations to avoid Thrashing

Pre-paging

Means we want to minimize the number of initial page faults by
brining at once into memory all the pages that will be needed.

We keep with each process a list of the pages in the working set. If
we want to suspend the process due to a lack of free frames or I/O,
we should remember the working set of that process.

When the process is to be resumed, the OS automatically brings
back into memory the entire working set for that process.

There is a trade of between the cost of page fault and consuming
the memory by some of currently unused pages from the working
set.

47 O a0

FFEfLo L LD HF

BSaada3%

Other Considerations to avoid Thrashing

found in the TLB) is a similar metric called TLB Reach.

[N

* Related to the hit ratio (Percentage of times that a page number is

« TLB Reach: The amount of memory accessible from the TLB.
« TLB Reach = (TLB Size) X (Page Size) (should be increased)

« |deally, the working set of each process is stored in the TLB. Otherwise
the process consumes time resolving memory reference in page table

rather than in TLB.

* |f we double the number of entries in TLB, we double the TLB reach.

Another approach for increasing TLB Reach is either:

* Increase the Page Size. This may lead to an increase in fragmentation

as not all applications require a large page size.

 Provide Multiple Page Sizes. This allows processes, that require
larger page sizes, to use them without an increase in fragmentation.

Dr. Tarek Helmy, KFUPM-ICS 48

O a0

FFEfLo L LD HF

BSaada3%

Page Size: Trade-off

Page size selection

— There is no a decision regarding the best page size, there is a set of
factors that support various sizes.

— Table size

« Decreases the page size, increases the number of pages and hence
increases the size of the page table.

— Fragmentation
« Memory is better utilized with smaller pages
— |/O overhead

 1/O time is composed of seek, latency, and transfer times where
transfer time is proportional of page size.

— Locality

« With small page size, locality will be improved, a small page size
allows each page to match program locality more accurately.

— A Locality is a set of pages that are actively used together
— As a process executes, it moves from locality to locality
» Example: Entering a subroutine defines a new locality

— Programs generally consist of several localities, some of which
overlap

[N

FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS
Y 49 mEWaaauw

BSaada3%

Other Considerations to avoid Thrashing

e Program structure

[N

awareness of the underlying demand paging.

— The system performance can be improved if the user/compiler/OS has an

— Assume that pages are 128 words in size. Consider a program whose

function is to initialize to 0 each element of 128 by 128 array.
— int A[][] = new int[128][128];

— Program 1: for (intj = 0; j < A.length; j++)
for (inti=0; i < A.length; i++)
Afi]i] = 0;

Notice that the array is stored row major A[O][0], A[O][1], A[O][2], A[O][3],

A[O][127], A[127][0], A[127][1], ... A[127][127].

— If the OS allocates less than 128 frames to the entire program, then it

causes 128 x 128=16384 page faults.

— Changing the code to Program 2: for (inti = 0; i < A.length; i++)
for (intj = 0; j < A.length; j++)

Allll] = 0;

— Zeros all the words on one page before starting the next page reducing

the number of page faults to 128.

Dr. Tarek Helmy, KFUPM-ICS 50

O a0

FFEfLo L LD HF

BSaada3%

Other Considerations to avoid Thrashing

The compiler and loader can have a significant effect on

paging. Separating code and data generating a reentrant

[N

code. This means pages can be read only and hence will

never be modified. Non modified pages need not to be

paged out to be replaced. \
e +—1C)

B\
\

— The chose of the programming language can affect paging

disk drive

as well. C and C++ use pointers frequently and pointers
tend to randomize access to memory, thereby potentially

diminishing a process locality. I

— OOPs also tend to have a poor locality of references.

— 1/O Interlock: Pages must sometimes be locked into

memory if they used as buffers for 1/O operations.

— Consider 1/0O: Pages that are used for file-mapping
must be locked from being selected for eviction by a

page replacement algorithm.

Dr. Tarek Helmy, KFUPM-ICS 51

O a0

FFEfLo L LD HF

BSaada3%

[N

OS Examples: Unix Paging Policy

Demand paging

 Page replacement algorithm

— Maintain a certain number of free frames (within a
min/max range)

— Swaps out processes when number of free pages is
below min.

— Unix uses 2-handed clock for page replacement
policy.

Dr. Tarek Helmy, KFUPM-ICS

52

O a0

FFEfLo L LD HF

BSaada3%

[N

OS Examples: Linux Paging Policy

« Demand paging

 Maintain a certain range of free frames

 Each process on a 32-bit machine is given 3 GB of

virtual address space and 1 GB reserved for page tables

and other kernel data.

« 3-level page table

« Kernel is never paged out.

Dr. Tarek Helmy, KFUPM-ICS

53

O a0

FFEfLo L LD HF

BSaada3%

OS Examples: Windows NT Paging Policy

. Demand paging

. Maintain a certain number of free frames

. For 32-bit machine, each process has 4 GB of virtual address space
. Uses working sets (per process)

— Consists of pages mapped into memory and can be accessed
without page fault

— Has min/max size range that changes over time
« If page fault occurs and working set < min, add page

- |If page fault occurs and working set > max, evict page from
working set and add new page

« |ftoo many page faults, then increase size of working set
. When evicting pages,

— Evict from large processes that have been idle for a long time
before small active processes.

— Consider foreground process last

[N

FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS
Y 5/ WmBaaaun

BSaada3%

OS Examples: Windows

« Uses demand paging with clustering. Clustering brings in pages
surrounding the faulting page.

* Processes are assigned working set minimum and working set
maximum.

* Working set minimum is the minimum number of pages the process is
guaranteed to have in memory.

« A process may be assigned as many pages up to its working set
maximum.

* When the amount of free memory in the system falls below a threshold,
automatic working set trimming is performed to restore the amount of
free memory.

« Working set trimming removes pages from processes that have pages
In excess of their working set minimum.

[N

Dr. Tarek Helmy, KFUPM-ICS
¥ 55 mmaauum

FFEfLo L LD HF

BSaada3%

OS Examples: Solaris 2

« Maintains a list of free frames to assign faulting
processes.

« Lots-free — threshold parameter to begin paging.
« Paging is performed by page-out process.
« Page-out scans pages using modified clock algorithm.

[N

« Scan-rate is the rate at which pages are scanned. This
ranged from slow-scan to fast-scan.

« Page-out is called more frequently depending upon the
amount of free memory available.

Dr. Tarek Helmy, KFUPM-ICS
4 56 MW aaE W

FFEfLo L LD HF

e B RERSENREE

FoLo Lol sF

Dr. Tarek Helmy, KFUPM-ICS

The End!!

S7

Baaaaah

FRfL L LT

