BSOS a0

Foor L@ sr

Ch. 4: Multi-Threading Programming

Dr. Tarek Helmy El-Basuny

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 1 B aaam%

Ch 4: Multi-Threading Programming

BSOS a0

« Threads Definition
Processing Modes in the OSs.
 Why does the OS support multithreading?
« Examples of Multithreaded Programs
« Thread’s Control Block
» Benefits of Threads vs. Processes
 Thread'’s Life Cycle
 User's and Kernel's Level Threads
 Combining ULT and KLT Models
— Many-to-One
— One-to-One
— Many-to-Many
» Threading Issues
— Thread Cancellation, Threads Pool, Signal Handling
« Threads Scheduling
— Priority Scheduling, and Priority Inversion/Inheritance Mechanisms
« Threading in Different Platforms:
— Windows, Solaris, Linux, Mac OS, etc.

Foor L@ sr
[]

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 2 MU aaamm

A Process Concept

BSOS a0

« A process is a key OS abstraction that users see.

« The environment you interact with when you use your computer is
built up out of processes.

— The power point we use Is a process.
— The browser you use is a process.
— The shell you type commands into is a process.

— When you execute a program you have just compiled, the OS
generates a process to run that program.

Foor L@ sr

« Let us think of the browser as a process.
« Does it support concurrency (i.e. browsing a page, down-loading,
playing a video, ...)?
* [s it aresponsive process?
+ If yes, why?

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 3 B aaam%

BSOS a0

Processing Modes

Foor L@ sr
[)

thread.

—

A Program =

Dr. Tarek Helmy, ICS-KFUPM

A
Thread

A Program ~<:

* In uni-processing mode: the Os supports a single process to run.

In Multiprocessing/Multitasking mode: the OS is sharing a single processor or
multiple processors among several processes concurrently, interleaving 1/O
pound with CPU pound processes.

* In parallel processing mode: The Os uses more than one processor to
simultaneously run multiple processes in parallel.

o Multithreading is a kind of multitasking/multiprocessing with low overheads
and no protection of tasks from each other, all threads share the same
address space (of the parent process) in memory.

e Processes can do several things concurrently by running more than one

o A process (Web Browser) may consist of the following threads:
e GUI thread, 1/0 thread, Computation thread.
A word processing consists of multiple threads, i.e. spell checker, auto save, .

—

Tww
Threads

FFdfLo LD

4 Baa a0

Sequential vs. Parallel Processing Modes

instructions

i T

= =

Foor L@ sr

Sequential Processing

instructions
o = e

=

Parallel Processing

Processes running on multiple-processors may be Independent or
Dependent.

No synchronization is required for independent processes but it is needed for
dependent processes.

« We are going to study latter different synchronization methods.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 5 WG aaamwm

BSOS a0

Multi-Processing with Single Processor Mode

Do you member, single-processing, multi-processing, single-processing with
multithreading, multi-processing with multithreading modes we discussed
earlier in the course?

Foor L@ sr

[Processor]

The Operating System

assigns processor time

to each Process based
on a certain policy.

Processor time will be shred among concurrently running processes.

Dr. Tarek Helmy, ICS-KFUPM 6 MEBaJaTh

FFdfLo LD

The Multi-Threading Mode

BSOS a0

* Processor time assigned to Process A will be shred among its threads.

Foor L@ sr

[Processor]

A Threading
library creates
threads and
assigns
processor time
to each thread

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 7 MAaJdamm

Multi-Threading in Multi-Processors Mode

BSOS a0

Processors time assigned to Process A will be shred among its threads.

Processor 1 *

Foor L@ sr

Processor 2

[
[,
[
[

Processor 3

Processor 4 h

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 8 MU aaamm

BSOS a0

What is a Thread?

Foor L@ sr

Dr. Tarek Helmy, ICS-KFUPM 9 B aaam%

Athread is a code section in a process that can execute concurrently with
other sections in the parent process (multithreading).

Thread/Lightweight Process/Execution Context is a single sequential flow
of control within a process.

Athread likes a sequential program, it has:

 Abeginning, a sequence of execution, and an end.

 Has a single point of execution, at any given time.

A thread cannot live on its own, it must live within a process.

Each process has its own memory space, but threads share memory
space of the parent process.

Therefore processes are “heavyweight” while threads are “lightweight”.

A Browser is a multi-threaded program. The Browser can perform multiple
simultaneous tasks:

« Fetch the source code of the main page,

« Download and play a media file,

« Activate separate threads for other parts of the page,

 Each thread sets up a separate connection with the server:

« Uses blocking calls
« Each part (an image) fetched separately and in parallel.

FFdfLo LD

Thread’s Control Block

BSOS a0

« Thread Control Block (TCB) is a data structure contains thread'’s information:
- Thread’s State (ready, or running, or blocked),
 Starting Address (Program Counter),

Foor L@ sr

» Registers, Execution Stack.
« Parent’s process control block contains everything else (e.g. process id,
open files, code segment, global data, etc.)
 TCB s a subset of the parent’s process control block (PCB).
« The parent’s (PCB) is the union of all TCBs of its children threads.
« When a child thread alters non-private data, all other threads of the
process can see this.
 Threads communicate via shared variables.

« Afile opened by one thread is available to other threads of the parent

process.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 10 G2

What does a Thread share with the Parent Process?

BSOS a0

« Multiple threads within a single process share:
— Process ID (PID)
— Address space
« Code section
* Global data section
— Open file descriptors
— Signals and signal handlers
— Current working directory
— User and group ID
« Each thread has its own
— Thread ID (TID)
— Set of registers, including Program Counter and Stack Pointer
— Stack for local variables and return addresses
— Signal mask

Foor L@ sr

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 11 G2

Foor L@ sr

Single Threaded & Multithreaded Process Models

BSOS a0

[—] I ConREer] [===] l Register] [Register] [Register]
[Counter] [Counter] [Counter]
[e] [—] [Stack] l Stack] l Stack l
Code l Data] [Files]
-
g H . % . H
i : Code :
: H i H
3 = = -
.) L -
H : : :
: : i H
. - s =
. s s
Single Thread . 8]
First Thread Second Thread Third Thread

Single Process P with single thread Single Process P with three threads

MNninmltithreaded

Simgle-—-T hreaded
Process Mhvlodel Process ZWlodel
ﬁﬁﬁﬁﬁﬁ e e e
e e e e
Process I sex Comtrol < ontrol ontrol
Control Staci 11 Block || 11 Block || | Block 11
Block) o B ey oy
1 frewmss [S
77777777
******** -1 i TEreT e 0 Liser ! isen L iser
Liser Flera P Stacls Stocls Stocls
Address Stacls CB] 1
Space | 14— ' . - L
iiiiiiiiiiiii
——————————
Lisen Fermel Hermel Fermel
Aaddress Staci Stmcic St=aclc
_ Semee P — T | R |
Figwmre <§.2 Simgle Threaded amdcd vimltithreaded Process vlodels

Thread Control Block contains a register image, thread priority and thread state
Information

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 12 B aaam%

Processes vs. Threads

BER S aaaTn
L |
" Which of the following belongs to the process and which to the thread?
o
. |
. Program code: Process
. Local or temporary data: Thread
Global data: Process
Allocated resources: Process
Execution stack: Thread
Memory management info: Process
Program counter: Thread
Parent identification: Process
Thread state: Thread
Registers: Thread a
|
. |
. |
. |
|
L |
L |

Dr. Tarek Helmy, ICS-KFUPM 13 G2

Threads vs. Processes

BSOS a0

« If two processes want to access shared data structures, the OS must be

involved.

Foor L@ sr

— OS involvement requires system calls, mode switches, extra execution

time.

« Creating new processes, switching between processes, etc. is slower than

performing same operations on threads.

« Two threads of the same process can share global data automatically

without the OS involvement (same as two functions in a single process).

« Compared to using several processes, threads are more economical way

to manage an application with parallel activities.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 14 B aaam%

BSOS a0

Benefits of Threads

Foor L@ sr

Takes less time
to create a new
thread than to
create a new
process

Dr. Tarek Helmy, ICS-KFUPM

Baagaa30%

FFdfLo LD

Foor L@ sr

Dr. Tarek Helmy, ICS-KFUPM 16 B aaam%

BSOS a0

Benefits of Multi-Threads per Processes

Responsiveness: Multithreading allow the process to continue running even
if part of it (a_thread) is blocked or is performing a lengthy operation. To
enable cancellation of separable tasks.

Speed up the Execution: On a multiprocessor machine, multiple kernel
level threads from the same process can execute simultaneously.

Resource sharing: Threads share the resources and memory of the process
to which they belong. This allows an application to have several threads
within the same address space.

Economy: Allocating memory and resources for each process is costly,
while threads within the same process share memory and files.

Supports of asynchronous processing: Independent parts of an
application that do not need to run in sequence can be threaded,

— 1.e. auto-saving of RAM into disk. A thread schedules itself to come-alive
every 1 minute to do this saving concurrently with main processing.

FFdfLo LD

Benefits of Multithreading

BSOS a0

« Multithreaded programs appear to do more than one thing at a time (same
iIdeas as multiprocessing, but within a single program).

— While you are browsing a web page,

Foor L@ sr

— Download several files in the background,
— Play a music file.
« Multithreading is essential for some applications (i.e. games, graphics, ...)
— One thread does the animation,
— Second thread responds to user inputs,
— Third thread is downloading an image.
* From the management point of view:
— Takes less time to create a new thread than a process
— Less time to terminate a thread than a process
— Less time to switch between two threads within the same process

— Since threads within the same process share memory and files, they can
communicate with each other without invoking the kernel.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 17 G2

BSOS a0

Example: Multi-Threaded Process

Foor L@ sr

LT
LT
-—"_-‘

Keyboard

« Word Processor with 3 Threads
— Thread 1: Interacts with user, and gets the pressed characters.
— Thread 2: Reformats the text (in background).
— Thread 3: Periodically backups the file into the HDD.

Four score and seven
years ago, our fathers
brought forth upon this
continent a new nation:
conceived in liberty,
and dedicated to the
proposition that all
men are created equal.

Now we are engaged
in a great civil war
testing whether that

nation, or any nation
so conceived and so
dedicated, can long
endure. We are met on
a great battlefield of
that war.

We have come to
dedicate a portion of
that field as a final
resting place for those
who here gave their

lives that this nation
might live. 1t is
altogether fitting and
proper that we should
o this.

But, ina largerserse,
we cannot dedicate, we
cannot consecrate we
canmot hallow this
gound. The bave
men, living and dead,

who struggled here
have consecrated it, far
above our poor power|
to add or detract. The
world will little note,
nor long remember,
what we say here, but
it can never forget
whatthey did here.

1t s for us the living,
mther, to be dedicated

here to the unfinished
work which they who
fought here have thus
far so nobly advanced.
1t is mther for us to be
here dedicated to the
great task remaining
before ws, that from
these honored dead we
take increased devotion
to that cause for which

they gave the last full
measure of devotion,
that we here highly
resolve that these dead
shall mot have died in
vain that this nation,
‘under God, shall have
a new birth of freedom
and that government of
the people by the
people, for the people

[

J

~"

Kernel

Dr. Tarek Helmy, ICS-KFUPM

18

Disk

Baagaa30%

FFdfLo LD

Example: Single Threaded Web Server
BSaaaah

« If we have a single threaded server like this:

« How long does the client request wait?

Foor L@ sr

« Isit going to support the responsiveness goal of the OS?

« Isitgoing to be productive and maximize the throughput?

I
——) Disk
E———

requests Web pages

CGI Web server

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 19 B aaam%

Example: Multi Threaded Web Server

BSOS a0

 Multi-threaded Web server:

« |s capable of processing multiple simultaneous service requests
in parallel which increases the throughput.

« Gets requests, sends web pages back quickly, be responsive.

« Keep popular pages in cache memory, i.e. some pages much
more popular than others.

Foor L@ sr

Dispatcher

Request dispatched

Dispatcher thread to a worker thread Server
/

/ &

|+ Worker thread
¢® | pisk
A
Request coming in

Al

from the network 4

Operating system

Many workers

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 20 B aaam%

Programming Assignment

BSOS a0

* Inthe lab, you need to code a Multi-Threaded program that will be able to
process multiple simultaneous service requests in parallel.
« We want to compare Multi-Threaded process with single threaded
process performance.
« See the effect of the number of threads on the response time.

Foor L@ sr

Dispatcher Worker
While (1) { Worker_thread(req) {
get_request(&req); fetch_webpage(req,&page);
start_new_worker(req); return_page(req, page);
} }

| !
dispatcher []

A 4

New Requests

workers

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 21 G2

Other Examples of Multithreaded Programs
BSaaaah

Modern OS kernels

— Deal with concurrent requests by mapping each user’s request to
a corresponding thread.

— But no protection needed within kernel.
« Database Servers

— Responsive access to shared data by many concurrent users.
 Network Servers

— Responsive support to concurrent requests from network,

— Multiple concurrent operations; File server, Web server, and
airline reservation systems.

« Parallel Processing (More than one physical CPU)
— Split program into multiple threads for parallelism.
Embedded systems

— Single Program that supports concurrent operations through
multithreading.

Foor L@ sr

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 22 G2

Summary: Threads vs. Processes

BSOS a0

« Athread has no data or code A process has code/data/heap
segments. & other segments.

« A thread cannot live on its own, There must be at least one
It must live within a process. thread in a process.

 There can be more than one Threads within a process share

:mggg Lnaﬁsprﬁ);ﬁsg,ggg Iggt code/data/heap, share I/O, but

process’s stack. each has its own stack &
registers.

Foor L@ sr

 Inexpensive creation _ _
. Inexpensive context switching. °© EXPENsive creation
« If athread dies, its stack is * Expensive context switching.

reclaimed. » If a process dies, its resources

« While one thread is blocked and are reclaimed & all threads die.
waiting, a second thread in the ,
same task can run.

« Multiple threaded processes
use fewer resources.

If one process is blocked, then
no other process can execute
until the first process is
unblocked.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 23 B aaam%

OSs that Support Threads and Processes

2 ¢ ¢

OIe Priicess
multiple threads

2 (888

multiple processes
multiple threads per process

BSOS a0

JAVA RUNTIME

MS-DOS

Foor L@ sr

multiple processes
one thread per process

l------J-----

§ —insoruction trace UNIX/ Linux WINDOWS

Figure 4.1 Threads and Processes [ANDE97]

MS-DOS supports a single user process and a single thread
UNIX/ Linux supports multiple user processes but only one thread per process.
A Java runtime environment supports one process with multiple threads

Solaris, Windows family, OS/2 support multiple processes with multiple threads. m

|
Dr. Tarek Helmy, ICS-KFUPM 24 AR agaaunhk

LLL W

Foor L@ sr

Dr. Tarek Helmy, ICS-KFUPM 25 B aaam%

L
L
L
L
L
L
L

Threads Life Cycle

Y V

Three key states: new, running, waiting [Blocked]
Thread’s States:

— New: a thread is created by a process/thread using a command often called
spawn/fork/start.

— Running: doing the assigned job.
— Blocked: when a thread needs to wait for an I/O event or asked to sleep for
some time.
— Dead: when a thread completes its job.
Termination of a process, terminates all threads within the process in windows.

They have no suspend state because all threads within the same process share
the same address space. Indeed: suspending a single thread involves

suspending all threads of the same process if they are of type user level threads.

SXirs
alng)
(S {'f) oo

/O
is
available

FFdfLo LD

Threads States

BSOS a0

Ready queue

l
______ —Q—©0 Stop

-
-
-

e Terminated

-

Foor L@ sr

Newly created N -
threads / ‘~\‘¢——’/ O
S \

|
\ sl | C)
T mning ™ Sleeping

-0
Currently executed N
thread N O

I/0 operation completes Waiting

- Waiting for 1/O operation to complete

- Waiting to be notified

- Sleeping

- Waiting to enter a synchronized section

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM G2

e p—— Java’s Thread Life Cycle

Newly Created State
— Thread myThread = new MyThreadClass();
Runnable State
— After calling start() in which run() is executed myThread.start();
— Logically it is running, but physically it can be in one of the two states
* Running State (Physically running on CPU)
« Ready State (Waiting for its turn in the ready queue)
Blocked State
— Enters to Blocked State if the thread ...
 Calls an objects wait() method
« Calls sleep() method
« Waits for 1/0O
— Exits from Blocked State if the thread ...

* |s waiting for an object, and on that object notify() or notifyAll() is
called.

* |s sleeping and the sleeping time elapsed.
* Is waiting for I/O, and 1/O is completed. | ,pjic void run() {int i = 0:
* Dead State
— When finishes the run() process —~—_

Foor L@ sr

while (i < 100) { i++;
System.out.println ("i =" +i); }

— myThread.stop(); }

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 27 G2

BSOS a0

Thread State Diagram from the Parent process point of view

Foor L@ sr

-

new CounterThreadl(max);

Object.wait()

Thread.sleep()
blocking IO call
waiting on a monitor

~

run() method
returns

Dr. Tarek Helmy, ICS-KFUPM 28 B aaam%

FFdfLo LD

BSOS a0

User-Level Threads (ULT)

Foor L@ sr

User-level thread management done by threads library in
the user space. The library provides support for thread
creation, scheduling. There is no support from the OS
kernel.

Threads scheduling is application specific. The OS kernel
is not aware of the existence of user’s level threads.

User’s level Thread switching does not require kernel
mode privileges (no mode switch).

Blocking of any user’s level thread blocks the entire
process if the kernel is single threaded.

When a user-level thread makes a system call (e.g.,
reading a file from disk), the OS moves the process to

the waiting state and will not schedule it until the I/O has
completed. Thus, even if there are other user-level threads
within that process, they have to wait, too.

User level threads are fast to create and manage.
Examples user thread libraries:

— Solaris 2 Ul-threads, Mach C-Threads, pthreads, etc...

Dr. Tarek Helmy, ICS-KFUPM

\

Threads
Library

User
Space

User
space

Kernel
space

Process

Kernel
Space

P
Processor

Thread

/

(¢

{ / Kernel

/

Run-time Thread

system

29 B agaamm

table

Process
table

FFdfLo LD

User’s Level Threads Library

BSOS a0

e The threads-support library in the user’s space contains code

for:
— Creating and destroying threads.
— Passing messages and data between threads.
— Scheduling thread execution.
— Saving and restoring thread contexts.

Foor L@ sr

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 30 B aaam%

Kernel Activity for ULTs

BSOS a0

« The kernel is not aware of user’s level thread activity but it is still
managing the parent process activity.

Foor L@ sr

« When a user’s level thread makes a system call, the whole

process Will be blocked.

« But for the thread library, that thread is still in the running state.

So thread states are independent of process states.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 31 B aaam%

Advantages and Disadvantages of ULT

BRSaagaTnm

3

2|+ Advantages - Disadvantages

4 — Thread switching does — If one ULT makes a

3 not involve the OS kernel: system call, the OS

1 no mode switching kernel blocks the process.

So all threads within the

Il be blocked.
— Scheduling can be process will be blocke

application specific:

choose the best — The kernel can only
algorithm. assign processes to
processors. Two threads
within the same process
cannot run
simultaneously on two
processors. (less
concurrency and
parallelization)

— ULTs can run on any OS.
Only needs a thread
library to be installed
(more Portable)

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 32 G2

Foor L@ sr

BSOS a0

Kernel-Level Threads (KLT)

Supported and managed by the OS

Kernel (slower to create).

No thread library but an API (I.e. system
calls) to the OS kernel thread facility.

OS Kernel maintains the the process and

T
L)
s

the threads.

Switching between threads requires the OS
kernel involvement.

Scheduling on a thread basis (another
thread can be scheduled in case of a
system call by others).

Examples OS support KLT:
- Windows ...

- Solaris

- Tru64 UNIX

- Linux

Dr. Tarek Helmy, ICS-KFUPM

Space
Kernel
Space
Processor
Process Thread
— = B
—
Process Thread
table table
33 BO a0

FFdfLo LD

Advantages and Disadvantages of KLT

BSOS a0

— Thread switching within the
same process involves the
OS kernel.

— The kernel can
simultaneously schedule
many threads of the same
process on many processors
(good for multiprocessor
environment)

Foor L@ sr

— There are 2 mode switches
per thread switch:

.. » User to kernel
— Blocking is done on a thread

level not on the process
level.

 Kernel to user.

— This results in a significant
slow down the performance.

— Kernel routines can be
multithreaded.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 34 G2

BSOS a0

Combined ULT/KLT Approaches

Foor L@ sr

Dr.

To get the advantages of both threads type, modern OSs support the
existence of both kernel and user level threads.

Special type of processes called Lightweight processes (LWP) will be used to
support the mapping of ULTs into KLTs.

We will present now several ways of the mapping process.

Process 1 Process 2 Process 3 Process 4 Process 3

CITE 5| (25 3|8 f][E 5 ¢ ¢
wser | [S L L [> e]
(3 o SHORED SHERED (s 08 D

Kernel

I P I P P P P
Hardware
s User-level thread @ Kernel-level thread @ Light-weight Process E Processor

Tarek Helmy, ICS-KFUPM 35 G aaam%

FFdfLo LD

e Multithreading Models

How do user’s and kernel’s threads map into each other?

. Many-to-One

Foor L@ sr
[]

. One-to-One

. Many-to-Many

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 36 B aaam%

Foor L@ sr

BSOS a0

Many-to-One Model

Used on OSs that do not support multiple
kernel’s level threads.

Many user’s level threads mapped to a single
kernel’s level thread.

Many-to-One allows a developer to create as
many threads as s/he likes, but only one kernel
thread can be scheduled at a time.

Advantages:

Thread management is done in user space, so it
is efficient.

Disadvantages

The entire process will block if one thread
makes a blocking system call.

Because only one thread can access the kernel
at a time, multiple threads are unable to run in
parallel on multiprocessors.

Example: Solaris Green Threads work this way.

Dr. Tarek Helmy, ICS-KFUPM

User thread

Kernel thread

FFdfLo LD

37 B agaamm

One-to-One Model

BSOS a0

» Used on OSs that support multiple
kernel’s level threads.

 Each user’s level thread maps to a
kernel’'s level thread.

* Examples: Windows Family
Advantages:

« Provides more concurrency than many-
to-one model by allowing another
thread to run when one thread makes a
blocking system call.

 Itallows multiple threadstorunin - - - - @----- @ ----- @ --- ’_ -
parallel on multiprocessors.

Disadvantage:

» Creating a user’s level thread requires
creating a corresponding kernel’s level
thread which can burden the

performance of an application.

User threads

Foor L@ sr

Kernel threads

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 38 B aaam%

Many-to-Many Model

BSOS a0

« Allows many user’s level threads to be User threads
mapped to many kernel’s level threads.

« The number of threads may be specific to

Foor L@ sr

either a particular application or a particular
machine e.g. an application may be allocated
more kernel threads on a multiprocessor
machine than on a single processor machine.

 Allows the OS to create sufficient number of
kernel threads.

« Many kernel’s level threads can run in parallel,

 When a user level thread makes a system

call, the kernel can schedule another thread
for execution. ‘
- Examples: Solaris 2, Windows Family, IRIX,
HP-UX and Tru64. kernel threads

Dr. Tarek Helmy, ICS-KFUPM 39 B aaam%

FFdfLo LD

Ch 4: Multi-Threading Programming

BSOS a0

« Threads Definition
Processing Modes in the OSs.
 Why does the OS support multithreading?
« Examples of Multithreaded Programs
« Thread’s Control Block
» Benefits of Threads vs. Processes
 Thread'’s Life Cycle
 User's and Kernel's Level Threads
* Combining ULT and KLT Models (Sec. 2)
— Many-to-One
— One-to-One
— Many-to-Many
 Threads Issues: i.e.
— Threads scheduling, Priority Inversion/Inheritance in Threads scheduling,
— Threads cancellation, Threads Pool,
— Signal handling by Threads
Threading in Different Platforms:
— Windows, Solaris, Linux, Mac OS, etc.

Foor L@ sr
[]

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM A0 WEaJamm

Threads Issues

BSOS a0

* Threads Scheduling: Which scheduling policy is used to schedule

the kernel threads?

Foor L@ sr

« Thread cancellation/terminating: When one thread returns a result,

the others should be cancelled or not?

« Threads pool: How many Kernel Threads does the OS create?

« Signal handling: How does a parent process notify its threads that an

event has occurred and which thread is going to respond?

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 41 B aaam%

BSOS a0

Kernel Threads Scheduling

Foor L@ sr

Dr. Tarek Helmy, ICS-KFUPM 42 G2

Preemptive priority scheduling policy is used to schedule the kernel threads:
— Each thread is given a global priority number.

— Highest priority thread gets the CPU (preemption may occur, it means the
CPU can be taken away from the thread if more higher priority thread is
ready for running).

— Round-robin based on the priority.
Preemption is essential in OS to be responsive with real-time threads.
Example 1: Single Processor (Two Threads)

— Thread A (high priority), B (low priority), but A is waiting for a resource
held by B.

— When B releases the resource that A is waiting (sleeping) for.
— B gives/preempts up CPU to allow A to run.
Example 2: 2 Processors (Three Threads)

— Thread A (high priority), B (medium priority), C (low priority), but B is
waiting for a resource held by A.

— A and C running on CPUs, B waiting on resource owned by A.

— A releases the resource .
Signal C to give up the CPU so B can run.

FFdfLo LD

Priority Inheritance/lnversion
BSaaaTh

» Priority scheduling problem: a high priority thread is blocked for a resource
held by a low priority thread, which means it cannot get the CPU cycles to
run while a medium priority thread is running!!!

Foor L@ sr

« Example:
— Thread C (low priority) holds resource M.
— Thread B (medium priority) takes CPU.
— Thread A (high priority) blocks on M (held by C).

— So the execution returns to B: that means B runs for alonqg time!

— A'is locked out of CPU for a long time, even though it is the highest
priority thread!

« Solution: Priority inheritance/lnversion
— Since A blocks on M (waiting for C), C gets (inherits) A’s priority.
— C will do its job and releases M then A gets its highest priority back

— A can run now.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 43 G2

S Threads Cancellation

« Cancellation: means terminating a target thread before finishing its job.

« Cancellation of a target thread may occur in 2 different scenarios:

— Asynchronous/Unsafe cancellation: terminates the target thread

Foor L@ sr

immediately. (windows platform supports safe and unsafe cancelation)

— Safe cancellation: allows the target thread periodically to check if it should
be cancelled or not, If yes terminate itself normally.

. In some OSs, termination of a process terminates all threads within the
process. (Unix/Linux platform supports safe cancelation)

« Think about the following scenarios:

1. Two threads searching a DB and one thread returns the result, the remaining

might be canceled without causing any troubles (safe cancelation).

2. When a user presses the stop bottom in the browser process then the thread

loading the page is canceled (causes a problem (unsafe cancelation).

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 44 B aaam%

BSOS a0

Difficulties with Asynchronous/Unsafe Cancellation

Foor L@ sr
[] [] []

Dr. Tarek Helmy, ICS-KFUPM 45 G2

Shared resources, i.e. a file is shared between two threads

— One thread closed the file while the other one is reading from it.

 Difficulty with asynchronous/unsafe cancellation:

— Canceling the thread while it is in the middle of updating data shared with
other threads.

Canceling a thread asynchronously
— May cause inconsistency of the global variable’s values.
— May not free a necessary system-wide resources.
Global variable, i.e. if counter = O is a shared global variable.
Thread 1 does increment counter++ without updating the global value.
Thread 2 does decrement it counter-- // “at the same time”
What is the order of counter’s values ?
— 0:1:0?
— 0:-1:07?

FFdfLo LD

Threads Pool

BSOS a0

» The server process creates a number of threads at the process start up and
places them in a pool where they wait for work or can be used in the many to
many mapping mode.

Foor L@ sr

— When a server receives a request, assigns it to a thread from the pool.

— Once a thread finishes its service, it returns to the pool and waits for a
work again.

— That means, no need to create a new thread for every client request, it
can be taken from the pool quickly.

Server Process Task Queue
- (@@@@© — O _l

thread thread thread 'ﬂ;:::;d o o O -::j o O

Completed Tasks \
-~ «— O

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 46 B aaam%

BSOS a0

Threads Pool

Foor L@ sr

Dr. Tarek Helmy, ICS-KFUPM 47 G2

If the pool is empty, the server waits until one becomes free.

The server process dynamically adjusts the number of threads in the pool
[optimize memory use] based upon factors such as:

— The number of CPUs in the system,
— The amount of physical memory,
— Expected number of client requests.

Advantages:

— Slightly faster to serve a request with an existing thread than creating a
new thread. Avoiding the overhead of creating a new thread.

— Thread pools improve resource utilization
— Allows the number of threads in the pool to be dynamic.

Disadvantages:

— Creating too many threads in one machine can cause the system to run
out of memory and even crash.

FFdfLo LD

Threads Pool Implementation

EERSagaa0n
a
: Every thread looks
4 for tasks in the
: queue
‘ N\
S
| wait ()
Task Queue I |
ker Threads
@) 2 Fiey Worker Threa
a
All the worker threads wait for tasks :
-
a
Dr. Tarek Helmy, ICS-KFUPM 48 B aaam% :

BSOS a0

Threads Pool Implementation

Foor L@ sr

Task Task Queue |
\ Worker Threads
]
(1)
A-synchronized” model: The number of worker threads
“Launch and forget” is fixed. When a task is inserted

to the queue, notify is called

Dr. Tarek Helmy, ICS-KFUPM 49 G2

FFdfLo LD

BSOS a0

Threads Pool Implementation

Foor L@ sr

Task

Task Queue notify()

Worker Threads

I

The number of worker threads
IS fixed. When a task is inserted
to the queue, notify is called

Dr. Tarek Helmy, ICS-KFUPM 50 B aaam%

FFdfLo LD

Threads Pool Implementation

BRGS0 %
a
a
o
-
: The task will be assigned to a thread in the pool
‘ 7N\
\
Task Queue ‘ 4
Worker Threads

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 51 B aaam%

Threads Pool Implementation

BRGS0 n

a

a

. |

o |

: The task is executed by the thread

‘ A\
,)

Task Queue | /

Worker Threads

The remaining tasks are executed by the other threads

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 52 G2

Threads Pool Implementation

BRGS0 n
a
a
. |
o |
: When a task ends, the thread is released
a
N
Task Queue ‘ 4
Worker Threads
/While the Q is not empty, take the task from
the Q and run it (if the Q was empty, wait()
would have been called) :
N J .
. |
o |
a
a
Dr. Tarek Helmy, ICS-KFUPM 53 AN L L |

Threads Pool Implementation

Dr. Tarek Helmy, ICS-KFUPM

ERSaaaa%w
3
a
ol
j A new task is executed by the released thread
a
a
—
_\\
Task Queue | J
Worker Threads

Baagaa30%

FFdfLo LD

Foor L@ sr

Dr. Tarek Helmy, ICS-KFUPM 55 B aaam%

BSOS a0

Signal Handling

Signals are used in OS to notify a process/thread that a particular event has
occurred.

All signals follow the same pattern:

— The signal is generated due to the occurrence of a particular event.
— The generated signal is delivered to a thread or a process.

— Once delivered, the signal must be handled.

A signal may be received either synchronously or asynchronously:

— Depending upon the source and the reason for the event being
signaled.

Asynchronous signal: The process/thread does not know ahead of time

exactly when a signal will occur. i.e. a running program performs illegal
memory access or division by zero.

Synchronous signal: The process/thread knows ahead of time exactly

when a signal will occur, i.e. expiration of assigned CPU time.

FFdfLo LD

Signal Handling

BSOS a0

« Signals can be sent by:

— The OS kernel to a process/thread.

Foor L@ sr

— One process to another process.
— A process to its threads.
« Signals may be handled by one of two possible handlers:
— A default signal handler.
— A user-defined signal handler [overriding the default one]

 When a process/thread receives a signal, it may perform one of the
following:

— Ignores the signal.

— Performs the default operation.

— Catches the signal (perform the user defined operation).

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 56 B aaam%

Signal Delivering

BSOS a0

* In single-threaded programs
— Straightforward: deliver the signal to the thread.

* In multiple-threaded programs

Foor L@ sr

— Deliver the signal to every thread in the process. or

— Deliver the signal to certain threads in the process. or

— Assign a specific thread to receive all signals for the process.
* In Windows Os for example:

— Windows OS does not explicitly provide support for signals, but it
emulates the signals using Asynchronous Procedure Calls (APCSs).

— APC is straightforward and is delivered to a particular thread in that
process.

— The APC facility allows a user thread to specify the thread that is to be
called when the user thread receives notification for a particular event.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 57 G2

BSOS a0

Java Threads

Foor L@ sr

Dr. Tarek Helmy, ICS-KFUPM 58 B aaam%

Java threads are implemented by the JVM but their behavior is heavily
iInfluenced by the underlying OS and its characteristics.

They do not fall under the category of either ULT or KLTs.

The actual scheduling policy is OS-dependent, and determined together by
the host OS and the JVM implementation.

Java offers concurrency mechanisms as a built-in part of the language:
— Built-in class Thread, with the run method as its "main”

— Synchronized methods, and synchronized code blocks

— Monitor locks and condition (wait) queues

— Thread priorities

Green threads exist only at the user-level and are not mapped to multiple
kernel threads by the operating system.

“Native threads" are the threads that are provided by the native OS.

Native threads can realize the performance enhancement from parallelism
(multiple CPUSs).

Java is naturally multi-threaded and because of this the underlying OS
iImplementation can make a substantial difference in the performance of your
application.

FFdfLo LD

Linux Threads

BSOS a0

* From the Linux OS point of view, there is no concept of a thread.
« Linux implements all threads as standard processes.
— Linux does not distinguish between processes and threads

« The Linux kernel does not provide any special scheduling semantics or data
structures to represent threads.

* Instead, a thread is merely a process that shares certain resources with
other processes.

« Linux uses the concept of task rather than threads and processes.

« Each thread has a unique task_struct and appears to the kernel as a normal
process.

« Linux provides kernel-level tasks:

— Tasks are created with the clone() system call and all scheduling is done
in the kernel.

Foor L@ sr

* Clone() allows a child task to share the address space of the parent task.

— The flags provided to clone() command help specify the behavior of the
new process and detail what resources the parent and child will share.

— l.e. clone_files, clone_newns (share files, or name space)

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 59 B aaam%

Solaris 2 Threads

BSOS a0

e Solaris 2 is a version of UNIX with support for threads at the kernel
and user levels and real-time scheduling.

* [t implements the Pthread API in addition to supporting user-level
threads with library of API for creation and management.

* Process includes the user’s address space, stack, and process
control block

« User-level threads (threads library)

— Invisible to the OS

— Are the interface for application parallelism
« Kernel threads

— The unit that can be dispatched on a processor and it's
structures are maintain by the kernel

» Lightweight processes (LWP)

— Each LWP supports one or more ULTs and maps to exactly one
KLT

Foor L@ sr

— Each LWP is visible to the application

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 60 B aaam%

Solaris 2 Threads

BSOS a0

1. It defines an intermediate level of threads between kernel and user levels
called Light Weight Processes [LWP].

2. Each process contains at least on LWP

Foor L@ sr

3. The thread library multiplexes user level threads on the pool of LWPs

—— user-level thread

| _— lightweight process

kernel thread 2' 2| 2 2 2 |2 |2 |2 lz

kernel

Task 2 is equivalent to a pure KLT approach
We can specify a different degree of parallelism (Task 1 and 3)

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 61 G2

Decomposition of user-level Active state

BSOS a0

« When a ULT Is active, it is associated to a LWP and thus to a KLT.

« Transitions among the LWP states is under the exclusive control of
the OS kernel.

Foor L@ sr

« A LWP can be in the following states:
— Running: assigned to CPU = executing

— Blocked because the KLT issued a blocking system call (but the
ULT remains bound to that LWP and remains active)

— Runnable: waiting to be dispatched to CPU

— Stopped: e.g. waiting for synchronization event

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 62 G2

Windows Family Threads

BSOS a0

* Implements the Win32 API, it is the primary API for MS OS family, it uses the
one-to-one mapping.

« Each thread contains
- Thread id

- Reqister set

Foor L@ sr

- Separate user and kernel stacks
- Private data storage area used by dynamic Link Libraries (DLL).
The primary data structure of Windows thread includes:

« TEB [thread environment block], contains thread identifier, user stack and
thread local storage.

- ETHREAD [executive thread block], contains thread start address and pointer
to the corresponding KTHREAD.

« KTHREAD [kernel thread block], contains scheduling and synchronization
information and the kernel stack.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 63 B aaam%

BSOS a0

Windows Family Threads

using a dispatcher

Foor L@ sr

« 32 priority levels

— 32: Dispatcher

Dr. Tarek Helmy, ICS-KFUPM

— 1-15: Variable class
— 16-31: Real time

— ldle thread is executed if no other thread is ready

sharing applications.

64

« Threads are scheduling using a priority-based preemptive scheduling

— Interactive tasks can get up to 3 scheduling quantum over time

Baagaa30%

FFdfLo LD

Foor L@ sr

Dr.

BSOS a0

Pthreads

Traditional Unix's are multi-tasking OSs. UNIX permits a user to run multiple processes
with single thread per each simultaneously.

Each process has its own address space, with its own copies of its variables, which are
completely independent.

This independence, while providing memory protection and therefore stability, causes
problems when you want to have multiple processes working on the same task/problem.

The cost of switching between multiple processes is relatively high.

For these reasons, and others, threads or Light Weight Processes (LWP) can be very
useful.

Threads share a common address space, and are often scheduled internally in a process,
thereby avoiding a lot of the inefficiencies of multiple processes.

One very popular API for threading an application is Pthreads, also known as POSIX
threads.

The Pthread library describes general thread behavior, and the functions which control
threads.

Libraries implementing Pthreads specification are restricted to Unix-based systems such
as Solaris 2.

Pthread library should be included
Some Pthread attributes include:
— Athread has a priority for scheduling
* Threads may use several scheduling methods, some of which use priority.
— A thread may have local or global scope of contention

* It may compete with all threads in the system for CPU time, or it may compete
only with threads in the same task (process).

Tarek Helmy, ICS-KFUPM 65 G aaam%

FFdfLo LD

BSOS a0

A Reminder for Major Exam 1

Foor L@ sr

Time: 7:00 — 9:0 PM,

Date: On Saturday, Feb. 29, 2020
Location: Building 24, Room: 120/121
Materials: Every thing we presented up to the
end of Ch.4 “Threads”.

Try to prepare your self well

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 66 B aaam%

BSOS aaaah

FoLe Lo Fllr

Dr. Tarek Helmy, ICS-KFUPM

The End!!

67

Baaaaah

FF L L L

