
Dr. Tarek Helmy, ICS-KFUPM

Ch. 7: Deadlock

Dr. Tarek Helmy El-Basuny

Weeks 8-9

Operating Systems ICS 431

Dr. Tarek Helmy, ICS-KFUPM

• To practice collaborative learning as we agreed, to foster self learning skill, and to help us

progress in the course.

• You need to study Ch. 6 “Process Synchronization” by yourself and it will be included in the

Major Exam II.

• Office hours can be used to answer any inquires about this chapter.

• Your objectives out of reading this chapter is to know:

– Why synchronization? Or the necessity of synchronization by the OS.

– How do processes work with resources that must be shared between them?

– What is a critical section?

– Dangers of handling the critical section without synchronization.

– How to ensure that only one process can get access to the critical section?

– What is atomic operation? It executes without interruptions, all or none.

– Different algorithms to synchronize processes entering into the critical section.

– Synchronization tools.

– Semaphores, and types of Semaphores.

– Incorrect usages of Semaphores.

– Monitors.

– Classical problems of synchronization.

– Synchronization methods in different OSs.

• Evaluating synchronization algorithms of handling a critical section where every algorithm

should allow Mutual Exclusion, Progress and bounded waiting.

Reminder: Ch. 6 Process Synchronization

2

Dr. Tarek Helmy, ICS-KFUPM

– Computer’s System Resources

– Deadlock, Live lock/Busy waiting, Starvation definitions,

– Deadlock examples in computer systems and real life,

– Computer System Model (Processes, Recourses, Requests)

– Fundamental causes of Deadlock

– Resource Allocation Graph to visualize the computer system.

• Methods for Handling Deadlocks

– Deadlock Prevention

– Deadlock Avoidance

– Deadlock Detection

– Deadlock Recovery

• Integrated approaches to handle Deadlock in current OSs.

Ch. 7 Deadlocks

3

Dr. Tarek Helmy, ICS-KFUPM

Computer’s System Resources

• Reusable resources

 A reusable resource is the one that can be safely used by the process at a

time and then reused by another process at different time.

 The process requests the resource, acquires it, and then releases it.

o Examples: Processors, I/O channels, main and auxiliary memory blocks,

I/O devices, files (i.e. data bases), semaphores, etc…

• Consumable resources

 A consumable resource is the one that will be created, used and destroyed.

It can not be reused by another process.

 The number of consumable resources is usually unlimited.

o Examples: Interrupts, Signals, Messages, Information in I/O buffers, etc.

• Preemptable resources.

 Can be taken away from a process with no ill effects (e.g. Memory, CPU,.).

• Nonpreemptable resources

 Will cause the process to fail if it is taken away (e.g. CD, …)

• Deadlock is the permanent blocking of a set of processes that either compete

for system resources or communicate with each other.

4

Dr. Tarek Helmy, ICS-KFUPM

The Deadlock Problem

• A set of blocked processes each holding a resource and waiting to acquire a resource
held by another process in the set.

• Example 1

– System has a Printer and a Disk.

– P1 and P2 each holds one resource and needs another one.

– P1 and P2 cannot progress, will wait for each other.

• Starvation vs. deadlock vs. Livelock

– Deadlock: circular waiting (without progressing) of processes for resources.

– Live lock/Busy waiting: processes run but make no progress, i.e. looping

– A real-world example of livelock occurs when two people meet in a narrow corridor,
and each tries to be polite by moving aside to let the other pass, but they end up
swaying from side to side without making any progress because they both
repeatedly move the same way at the same time.

– Starvation: a process/thread is temporary waiting to gain regular access to shared
resources and is unable to make progress now but will latter progress.

– Both deadlock and livelock lead to starvation, but not the other way

wait(printer)

hold(disk)

Wait(disk)

hold(printer)

P2 P1

Disk

Printer

P1 P2

“P1 is waiting for P2”

“P2 is waiting for P1”

5

Process 1 Process 2

Resource 1

Resource 2 Waits For

Waits For

Held By

Held By

Dr. Tarek Helmy, ICS-KFUPM

• People sometimes classify deadlock into the following types:

• Resources deadlocks: when processes are waiting for each other

due to limited number of resources.

• A process needs multiple resources for an activity.

• Deadlock occurs if each process in a set requests a resource

held by another process in the same set, and it must receive

the requested resource to move further.

• Communication deadlocks: when processes are waiting for each

other due to lost of communicating messages.

• Processes wait to communicate with other processes in a set.

• Each process in the set is waiting on another process’s

message, and no process in the set initiates a message until

it receives a message for which it is waiting.

Deadlock Types

6

Dr. Tarek Helmy, ICS-KFUPM

Example of Resources Deadlock: Due to shortage of memory

• 200K bytes of memory space is available for allocation, and the following

sequence of events occur.

• Deadlock occurs if both processes progress to their second request. Why?

P1
. . .

. . .
Requests 80 Kbytes;

Requests 60 Kbytes;

P2
. . .

. . .
Requests 70 Kbytes;

Requests 80 Kbytes;

7

Dr. Tarek Helmy, ICS-KFUPM

P1

Client
P2

Server

Network

MSG

Acknowledge

MSG

Acknowledge

MSG
Acknowledge

(Lost)

Example of Communication Deadlock: Due to lost of messages

• Suppose a server process and a client process run on two different machines.

– The server first sends an initialization message to the client “i.e. I am ready”, and
then waits for a request from the client.

– The client first waits for the initialization message, and then makes requests.

– What happen if the initialization message is lost?

– i.e. If the server is so fast so that the server’s initialization message arrives at the
client while it is still in its booting up stage, then the initialization message will be
lost.

– Thus, the client is waiting for the initialization message, whereas the server is
waiting for a request message from the client.

– A deadlock now occurs.

– If the server and client machines are of the same speed, and started
simultaneously, then the system runs smoothly without deadlock. Also, if both of
the server or the client periodically initiates messages then the system runs
smoothly as well.

8

Dr. Tarek Helmy, ICS-KFUPM 9

Example: Deadlocks in Databases Access

• Deadlock can occur if 2 processes

access & lock records or Tables or

even the whole database.

• 3 different levels of locking :

– The entire database for duration of

request.

– A subsection of the database i.e.

Table.

– Individual record until the process

is completed.

• If don’t use locks, can lead to a race

condition.

• This particular type of deadlock is

easily prevented by using an all-or-

none resource allocation algorithm.

P2 P1

Record 2

Record 1

P2 P1

Database 2

Database1

P2 P1

Table 2

Table 1

Dr. Tarek Helmy, ICS-KFUPM 10

Example: Deadlocks on File Requests

• If processes can request and

hold files for duration of their

execution, deadlock can occur.

• If only two files and two

processes, this may lead to

starvation !!

• But, if other processes that

require F1 or F2 are put on

hold as long as this situation

continues, this will lead to

deadlock !

• Deadlock remains until a

process is withdrawn or

powerfully removed and its file

is released.

Dr. Tarek Helmy, ICS-KFUPM 11

Deadlocks in Disk Sharing

• Disks are designed to be shared, so it is common for processes to

access different areas of same disk.

• Without controls to regulate use of disk drive, competing processes

could send conflicting commands and deadlock the system.

 P1 Read records at

 cylinder 20

 P2 Write to file at

 cylinder 310

I/O

Channel

Disk

control

unit

Dr. Tarek Helmy, ICS-KFUPM

Real Deadlock in the daily life

(a) Potential deadlock (b) Actual deadlock.

12

Dr. Tarek Helmy, ICS-KFUPM

Bridge Crossing Deadlock Example

• Traffic only in one direction.

• Each section of a bridge can be viewed as a resource.

• If a deadlock occurs, it can be resolved if one car backs up

(preempt resources and rollback).

• Several cars may have to be backed up if a deadlock occurs.

• Starvation is possible.

13

Dr. Tarek Helmy, ICS-KFUPM

Deadlock Causes

Fundamental causes of deadlocks: Four necessary and sufficient conditions for a

deadlock to occur. All of these conditions must be present for a deadlock to occur.

• If one of these conditions is absent, no deadlock is possible.

1. Mutual exclusion condition:

 Each resource is either currently assigned to exactly one process or a resource

that cannot be used by more than one process at a time.

2. Hold and wait condition:

 Processes currently holding resources granted earlier can request new resources

or processes already holding resources may request new resources.

3. No preemption condition:

 Resources previously granted cannot be taken away from a process. They must be

explicitly released by the process holding them.

4. Circular wait condition:

 There exists a set {P0, P1, …, Pn} of waiting processes such that P0 is waiting for a

resource held by P1, P1 is waiting for a resource held by P2, …, Pn–1 is waiting for a

resource that is held by Pn, and Pn is waiting for a resource held by P0.

 14

Dr. Tarek Helmy, ICS-KFUPM

Computer System Model

• Any computer system consists of:

– Processes running in the system, i.e. P1, P2, . . ., Pn

– Resource available (HW or SW), i.e. R1, R2, . . ., Rm

• CPU cycles, memory spaces, I/O devices, signals, messages, ….

• Each resource type Ri may have Wi instances.

– The blocks of the main memory or the disk can be given to more than processes.

• Each process utilizes a resource as follows:

– Requests it, if the request can not be granted immediately, then the process must

wait.

– Uses it, the process can operate on the resource.

– Releases it, the process releases the resource either voluntarily or preempted.

15

Dr. Tarek Helmy, ICS-KFUPM

Resource-Allocation Graph (RAG)

• A graphical way to visualize the computer system to determine if a deadlock

may occur or no.

• Basic components of any RAG are set of vertices V and a set of edges E.

• V is partitioned into two types:

– P = {P1, P2, …, Pn}, the set consisting of all the processes in the system.

– R = {R1, R2, …, Rm}, the set consisting of all resource types in the

system.

• E can be either:

– Request edge – directed edge P1  Rj

– Assignment edge – directed edge Rj  Pi

• An arrow from the process to resource indicates the process is requesting

the resource.

• An arrow from a resource to a process means an instance of the resource

has been allocated/assigned to the process.

16

Dr. Tarek Helmy, ICS-KFUPM

Resource Allocation Graph

Pi

Pi

Rj

Rj

• In the RAG, the process is represented by a circle, and
the resource is represented by a square.

• A Process

• A Resource type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

• Dots represent number of instances of a resource type.

• A request edge points to the resource, and an
assignment edge comes from the resource instances
(dots) to the process.

17

Dr. Tarek Helmy, ICS-KFUPM

• The above RAG can be interpreted as followings:

– P1 is holding an instance of R2 and is waiting for an instance of R1.

– P2 is holding an instance of R1, an instance of R2 and is waiting for an
instance of R3.

– P3 is holding an instance of R3.

Resource allocation graph:

 P= {P1, P2, P3}

 R={R1, R2, R3, R4}

 E={P1→ R1, P2 → R3, R1→ P2, R2 →

P2, R2 → P1, R3 → P3}

Recourse instances:

 One instance of resource type R1

 Two instances of resource type R2

 One instance of resource type R3

 Three instances of resource type R4

P2 Requests R3

R3 Assigned to P3

Resource Allocation Graph: Example

18

Dr. Tarek Helmy, ICS-KFUPM

1. If the RAG contains no cycles, then no process is deadlocked.

2. If the RAG contains a cycle, then:

• If the resource types have multiple instances, then deadlock MAY

exist.

• If each resource type has one instance or the number of

assignment and requesting is more than the number of

instances, then deadlock has occurred.

Basic Facts of a RAG

19

RAG Example 2 RAG Example 1

Dr. Tarek Helmy, ICS-KFUPM

RAG with a deadlock: Two cycles:

• Cycle 1: P1→R1→ P2 →R3→

P3→R2→P1

• Cycle 2: P2→R3→ P3 →R2→P2

RAG with a cycle but no deadlock:

• Cycle: P1→R1→ P3 →R2→P1

• P4 may release its instance of

R2 that can be allocated to P3

breaking the cycle.

Resource Allocation Graph Examples

20

Dr. Tarek Helmy, ICS-KFUPM

There are three strategies:

1. Ignores the deadlock handling. If it occurs, resolved by explicit user

intervention. It is used by some operating systems, i.e. traditional UNIX.

2. Ensures deadlock never occurs using either:

– Prevention strategies: Preventing the main causes/conditions of deadlock

so that deadlock is impossible. If we can not prevent the causes then try,

– Avoidance strategies: Avoiding at least one of the four conditions. Do not

allow the system to get into a deadlocked state by disallowing dangerous

allocations that may cause deadlock to happen.

3. If we can not prevent its causes or avoid its occurrence. This requires using:

– Detection strategies: To know that deadlock has occurred, and which

processes are in deadlock.

– Recovery strategies: Abort a process or preempt some resources (using

some polices) when deadlock is detected, to recover it.

How to Handle Deadlock

21

Dr. Tarek Helmy, ICS-KFUPM

Do not allow one of the four conditions to occur.

1. Preventing Mutual exclusion:

 Example: Allow the printer to be concurrently shared?

 What are the consequences?

 Conclusion:

 Prevention not possible, since some resources are naturally
non-sharable.

 Automatically holds for printers, CD-RW and other non-
sharable devices.

 Solutions:

 Make resources concurrently sharable wherever possible e.g.
read-only file access (don't need mutual exclusion and aren’t
easily to deadlock).

 Better to have a spooler process to which print jobs are sent
(completed output file must be printed first).

Deadlock Prevention

22

Dr. Tarek Helmy, ICS-KFUPM

2. Preventing Hold and wait:

 Process should request all the resources it will ever need at once.

 Require process to request and be allocated all its resources
before it begins execution, or allow process to request resources
only when the process has none.

 Must guarantee that whenever a process requests a resource, it
does not hold any other resources.

 Conclusion:

 Inefficient - not all resources needed all the time

 Processes probably will not know in advance what resources they
will need or may have to wait excessive time to get all resources at
once.

 Utilization is low: many resources may be allocated but unused for
long time.

 Starvation possible: the process requests popular resource may
wait indefinitely as it might be allocated to another process.

Deadlock Prevention

23

Dr. Tarek Helmy, ICS-KFUPM

3. Preventing No Preemption (means support preemption):

– If a process that is holding some resources requests another resource that

cannot be immediately allocated to it, then all resources currently being held

are released.

– Need to save state of resource if a process is forced to release it

 Not practical for some resources, i.e.:

• Cannot take a printer away from a process in the middle of printing

• Cannot take a semaphore away from a process randomly (might be in the

middle of updating a shared area)

• Cannot take open streams, pipes and sockets away

– process would need to be written very carefully, probably using signals

– very undesirable if possible at all

 Occasionally possible:

– Processes resident in main memory (one or more processes can be

swapped out to VM to release their pages and allow remaining processes

to continue)

Deadlock Prevention

24

Dr. Tarek Helmy, ICS-KFUPM

4. Preventing Circular Wait:

 Impose order of all resource types and require that each process

requests resources in an increasing order of enumeration.

 Supply information about how resources are to be used at process

startup. i.e.

 Use CD and disk, then release both

 Use and release CD, then use disk

 Prioritize processes and assign resources in the order of

priorities, i.e. hard drive has higher order than printer.

 Impractical due to:

 It will depend on programmer to follow the order (one program

may not follow the order and causes deadlock system)

 Adding a new resource that upsets ordering requires all code

ever written for system to be modified!

 Resource numbering affects the efficiency of utilization.

Deadlock Prevention

25

Dr. Tarek Helmy, ICS-KFUPM

– Since we can’t prevent the causes of deadlock,

– Is it possible to avoid its occurrence? Through careful allocation of

resources to processes to avoid entering the system into unsafe state.

• If we have prior knowledge of how resources will be requested, then will

be possible to determine what will be the state of the system? if the OS

allows each process to get the requested resources,

• Possible states are:

1. Deadlock: Processes will be waiting each other without progress.

2. Unsafe state: If some requests are allocated deadlock may occur.

3. Safe state: there are enough resources such that all processes will be

able to finish without waiting for each other.

• As we will conclude “avoidance may be inefficient”:

- Must know resources requirements of all processes in advance.

- Resource request per each process has to be known and fixed.

- Complex analysis for every request.

Deadlock Avoidance

26

Dr. Tarek Helmy, ICS-KFUPM

• If a system is in safe state  then the deadlock never occurs.

• If a system is in unsafe state  then there is possibility of a deadlock

to occur.

• Avoidance  means ensure that a system will never enter into an

unsafe state.

Only with luck will
processes avoid

deadlock.

OS avoids deadlock

Safe, Unsafe , Deadlock State

27

Dr. Tarek Helmy, ICS-KFUPM

Deadlock Avoidance

• Simplest and most useful model, it requires that each process

declares in advance the maximum number of each resource type it

may need.

• The deadlock-avoidance algorithm dynamically examines the

resource-allocation state to ensure that a circular-wait condition will

never be there.

• Resource-allocation state is defined by the number of available and

allocated resources, and the maximum needs of the processes.

• System makes a decision based on

– The resources currently available

– The resources currently allocated

– Future requests for resources

28

Dr. Tarek Helmy, ICS-KFUPM

Safe State

• When a process requests an available resource, the OS must decide

if the immediate allocation leaves the system in a safe state or no.

• System is in safe state if there exist a safe sequence of all processes.

• Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi

requests can be satisfied by currently available resources +

resources held by all the Pj, with j<i.

– If Pi resource needs are not immediately available, then Pi can

wait until all Pj have finished, j<i.

– When Pj is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate.

– When Pi terminates, Pi+1 can obtain its needed resources, and so

on.

29

Dr. Tarek Helmy, ICS-KFUPM

Example

• System with 12 memory blocks available and three processes:

– P0: currently has 5, maximum needs of 10, future needs 5.

– P1: currently has 2, maximum needs of 4, future needs 2.

– P2: currently has 2, maximum needs of 9, future needs 7.

– State is ??????.

– However, if P2 were allocated 1 additional block, the state would

become ??????.

– However, if P2 were to request 1 additional block, the state would

become ??????.

30

Dr. Tarek Helmy, ICS-KFUPM

Example

• System with 12 disks and three processes:

– P0: currently has 5, maximum need of 10, needs 5.

– P1: currently has 2, maximum need of 4, needs 2.

– P2: currently has 2, maximum need of 9, needs 7.

– State is currently safe

• 3 disks are available, 2 can be given to P1, when it

terminates there will be 5 drives available, P0 can use them

and terminates, this makes 10 drives available, P2 can get 7

of them and finish. Safe sequence is (P1, P0, P2).

– However, if P2 were allocated1 additional disk, the state would

become unsafe.

• Because all of the 3 processes could not obtain their needed

disks to complete.

– However, if P2 were to request 1 additional disk, the state would

become safe.

31

Dr. Tarek Helmy, ICS-KFUPM

Resource-Allocation Graph Algorithm

• Add to the RAG an extra link called a claim edge.

• Claim edge Pi Rj indicated that process Pi may request resource

Rj in future.

• Claim edges represented by dashed line arrows .

• Claim edge converts to a request edge when a process requests a

resource.

• When a resource is released by a process, assignment edge

reconverts to a claim edge.

• Resources must be claimed a priori in the system.

• If no cycle comes into existence, then the state is still safe

• A cycle means an unsafe state (although not necessarily deadlock)

 32

Dr. Tarek Helmy, ICS-KFUPM

RAG For Deadlock Avoidance

1. Suppose that P2 requests R2, Fig. 1. Although R2 is free, we can

not allocate it to P2 since this will create a cycle and indicates of

unsafe state, Fig. 2.

2. If P1 requests R2 and P2 requests R1, then a deadlock will occur.

Fig. 1
Fig. 2

Unsafe State in Resource-Allocation Graph

33

Dr. Tarek Helmy, ICS-KFUPM

RAG For Deadlock Avoidance: Multiple Instances

1. Suppose that P2 requests R2, Fig. 1. because R2 has two

instances, we can allocate them to P1 and P2 even there will be a

cycle and indicates of safe state, Fig. 2.

2. That means the RAG is not applicable in case of having

recourses with many instances.

3. There should be another algorithm fro that situation.

Fig. 1
Fig. 2

Safe State In Resource-Allocation Graph

34

Dr. Tarek Helmy, ICS-KFUPM

• We have presented last class:

• Computer’s System Resources: Consumable resources, reusable resources,

preemptable, non- preemptable. Here we will treat everything (interrupts, signals,

messages, information in I/O buffers, I/O devices) as resources.

• Deadlock, Live lock/Busy waiting, Starvation Definitions,

• Types of Deadlock: Communication deadlocks, Resources deadlocks, what does it

mean?

• Deadlock Examples: due to limited recourses, due to lost of communicating messages,

due to sharing of resources, due to mutual exclusion.

• Deadlock causes: Mutual exclusion, no-preemption, hold and wait, circular wait.

• Computer system modeling,

• Constructing the RAG, facts in a RAG.

• Methods for Handling Deadlocks

– Deadlock Prevention: can we prevent the deadlock? If yes how and if no why?

• We are going to present:

– Deadlock Avoidance: can we avoid the deadlock? If yes, How? if no why?

– Deadlock Detection: can we detect the deadlock? If yes, How?

– Recovery from Deadlock

• Integrated Approaches to Deadlock Handling.

Deadlocks

35

Dr. Tarek Helmy, ICS-KFUPM

Banker (Dijkstra’s) Algorithm

• The Resource Allocation Graph algorithm is not applicable to avoid the

deadlock in systems with multiple instances of each resource type.

• The banker algorithm is applicable to multiple resource instances.

• This algorithm could be used in the banking system to ensure that the bank

never allocates its available cash such that it can no longer satisfy the needs

of all its customers.

• Each process must declare the maximum number of each resource type it

may need in future.

• This number should not exceed the total number of available resources

in the system.

• When a process requests a resource, the system must check whether the

allocation of these resources will leave the system in a safe state.

• If it will leave the system in a safe state:

– Then, resources will be allocated,

– Otherwise, the process must wait until other processes release enough

resources.

• When a process gets all its resources it must return them in a finite amount of

time.

36

Dr. Tarek Helmy, ICS-KFUPM

 Resource allocation state matrix
Allocij = the number of units of resource j held by process i

<n1, n2, n3, ..., nr>

Deadlock avoidance

• Examine each resource request and determine whether or not granting the

request can lead to deadlock.

• Define a set of vectors and matrices that characterize the current state of all

resources and processes.

R1 R2 R3 ... Rr

P1

P2

P3

Pp

n1,1 n1,2 n1,3 ... n1,r

n2,1

n3,1

np,1 np,r

n2,2

...

...

...

...

 Maximum claim matrix

 Maxij = the maximum number of units of

resource j that the process i will ever require

simultaneously.

 Available vector
 Avaij = the number of units of resource j that

are available.

37

Dr. Tarek Helmy, ICS-KFUPM

Data Structures for the Banker Algorithm

Let n = number of processes, and m = number of resources types.

• Allocation: An n x m matrix. Allocation[i, j] = k, means Pi is currently

allocated k instances of Rj.

• Max: An n x m matrix. Max [i, j] = k, means process Pi may request at

most k instances of resource type Rj.

• Need: An n x m matrix. Need[i, j] = k, means Pi may need k more

instances of Rj to complete its task.

Need [i, j] = Max[i, j] – Allocation [i, j].

• For simplification, let X and Y be vectors of length n, we say that X 

Y iff X[i]Y[i] for all i=1,2,.., n.

• If X=[0,3,2,1] and Y=[1,7,3,2], then X<Y.

• Available: Vector of length m. Available [j] = k, means there are k

instances of resource type Rj available.

38

Dr. Tarek Helmy, ICS-KFUPM

Safety Algorithm

This algorithm for finding out whether or not the system is in safe state

1. Let Work and Finish be vectors of length m and n, respectively.

Initialize:

Work = Available

Finish [i] = false if there is a process i (i=1, 2, …, n) not yet finish.

2. Find a process i such that both:

(a) Finish [i] = false (not yet finish)

(b) Needi  Work (needs less recourses than the available)

If no such i exists, go to step 4. (all processes have finished)

3. Work := Work + Allocationi (update the work and available)

Finish[i] = true

go to step 2.

4. If Finish [i] = true for all i, then the system is in a safe state.

The algorithm may require an order of m*n2 operation to decide.

39

Dr. Tarek Helmy, ICS-KFUPM

Resource-Request Algorithm for Process Pi

 Requesti = request vector for process Pi. If Requesti [j] = k then

process Pi wants k instances of resource type Rj.

1. If Requesti  Needi go to step 2. Otherwise, raise error condition,

since process has exceeded its maximum claim.

2. If Requesti  Available, then go to step 3 otherwise Pi must wait,

since resources are not available.

3. Pretend to allocate requested resources to Pi by modifying the

state as follows:

 Available := Available - Requesti;

 Allocationi := Allocationi + Requesti;

 Needi := Needi – Requesti;

• If safe  the resources are allocated to Pi.

• If unsafe  Pi must wait, and the old resource-allocation state

is restored.

40

Dr. Tarek Helmy, ICS-KFUPM

Example of Banker’s Algorithm

• Consider a system of 5 processes and 3 resources:

• 5 processes P0 through P4;

• Resource types: A (10 instances), B (5 instances, and C (7

instances).

• Snapshot at time T0:

 Allocation Max Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

Need

 A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

The content of the
matrix need is defined to
be Max – Allocation.

The system is in a safe state since the sequence

< P1, P3, P4, P2, P0> satisfies safety criteria.

41

Dr. Tarek Helmy, ICS-KFUPM

Example P1 Allocated (1, 0, 2)

• Suppose that P1 allocated 1 additional instances of type A, 2 instances of
type C. To decide whether this request can be granted, we:

• Check that Need Available (that is, (0,2,0)  (2,3,0)  true. This request
can be allocated and we arrive at the new state:

 Allocation Max Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 2 3 0

 P1 3 0 2 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

• Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2>

satisfies safety requirement.

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

Need

 A B C

P0 7 4 3

P1 0 2 0

P2 6 0 0

P3 0 1 1

P4 4 3 1

42

Dr. Tarek Helmy, ICS-KFUPM

Deadlock Avoidance is not Practical

• It is very difficult or even impossible for some kind of processes to declare

the maximum # of resources it requires in advance.

– Many processes are interactive and/or dynamic where the users or the

system cannot anticipate their eventual requirements.

– Moreover, its point in time is also unknown.

• Resources may disappear or newly plug in

– Some devices leave the available pool while others may plug in.

• New processes may appear or old processes may be killed.

– The system is dynamic and processes are born and die at any moment

• The algorithm requires that processes release the resources within a finite

time, but this may cause lengthy delay to other processes waiting in line.

43

Dr. Tarek Helmy, ICS-KFUPM

Deadlock Detection

• If a system does not employ either a deadlock

prevention or a deadlock avoidance, then a deadlock

may occur, and this requires:

• A detection algorithm to examine the state of the

system and determines whether a deadlock has

occurred or not. If occurred, which processes are in

the deadlock?

• A recovery policy to recover from the deadlock.

44

Dr. Tarek Helmy, ICS-KFUPM

Wait-For Graph: Deadlock Detection Algorithm

• If all resources have a single instance, then Wait-For Graph (WFG) or it

may be named (Process Dependency Graph) will be used.

1- Create a WFG (Process Dependency Graph (PDG)

– In a WFG/PDG, only nodes and edges are there where:

• Nodes represent processes, and

• An edge from Pi  Pj means Pi is waiting for Pj.

2- Periodically check for a cycle in the WFG/PDG.

3- If there is a cycle, then processes in the cycle are deadlocked.

– An algorithm to detect a cycle in a graph requires an order of n2

operations, where n is the number of vertices (processes) in the

graph.

45

Dr. Tarek Helmy, ICS-KFUPM

Resource-Allocation Graph  Wait-for Graph

Resource-Allocation Graph Corresponding WFG/PDG

How to create a WFG/PDG out of the RAG?

• Remove the nodes of type resources from the RAG.

• If the corresponding RAG contains a request edge Pi Rq and an

assignment edge from Rq Pj for the same resource Rq.

• Remove the request and assignment edges.

• Create an edge from Pi Pj in the WFG

• An edge from P(i) to P(j) implies that P(i) is waiting for P(j) to release a

resource that P(i) needs.

46

Dr. Tarek Helmy, ICS-KFUPM

Resource-Allocation Graph  Wait-for Graph

Resource-Allocation Graph

47

Corresponding WFG/PDG

How to create a WFG/PDG out of the RAG?

• Remove the nodes of type resources from the RAG.

• If the corresponding RAG contains a request edge Pi Rq and an assignment edge

from Rq Pj for the same resource Rq.

• Remove the request and assignment edges.

• Create an edge from Pi Pj in the WFG

• An edge from P(i) to P(j) implies that P(i) is waiting for P(j) to release a resource that

P(i) needs.

Dr. Tarek Helmy, ICS-KFUPM

Exercises: try to solve

• Suppose there is only one instance of each resource

• Example 1: Is there a deadlock?

1. P1 has R2 and R3, and is requesting R1

2. P2 has R4 and is requesting R3

3. P3 has R1 and is requesting R4

• Example 2: Is there a deadlock?

1. P1 has R2, and is requesting R1 and R3

2. P2 has R4 and is requesting R3

3. P3 has R1 and is requesting R4

• Use a wait-for graph/Process Dependency Graph:

48

Dr. Tarek Helmy, ICS-KFUPM

With Multiple Instances of Resources

• The WFG algorithm is not applicable to systems with multiple instances of each

resource type.

• Another algorithm is applicable to such kind of systems, where the following data

structures will be created:

• Allocation: An n x m matrix defines the number of resources of each type currently

allocated to each process.

• Request: An n x m matrix indicates the current request of each process. If Request

[i, j] = k, then process Pi is requesting k more instances of resource type Rj.

• Available: A vector of length m indicates the number of available instances of each

resources type.

Resource = (R1, R2, ..., Rm)

Available = V = (V1, V2, ..., Vm)

A11 A12 ... A1m
A21 A22 ... A2m

An1 An2 ... Anm
...

Allocation = A =

Available = Total - Allocation

M11 M12 ... M1m

M21 M22 ... M2m

Mn1 Mn2 ... Mnm

...
Request =

49

Dr. Tarek Helmy, ICS-KFUPM

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively

Initialize:

Work := Available. For i = 1,2, …, n, if Allocationi  0, then Finish[i]

= false; otherwise, Finish[i] = true.

2. Find a process i such that both:

(a) Finish[i] = false

(b) Requesti  Available

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true, go to step 2.

4. If Finish[i]= false, for some i, 1  i  n, then the system is in

deadlock state. Moreover, if Finish[i]= false, then Pi is

deadlocked.

Algorithm requires an order of O(m x n2) operations to detect whether

the system is in deadlocked state.

50

Dr. Tarek Helmy, ICS-KFUPM

Example of Detection Algorithm

• 5 processes, P0 through P4; three resource types A (7 instances), B (2

instances), and C (6 instances).

• Snapshot at time T0, we have this resource allocation state:

 Allocation Request Available

 A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.

51

Dr. Tarek Helmy, ICS-KFUPM

Example of Detection Algorithm

• Suppose now P2 requests an additional instance of type C.

 Allocation Request Available

 ABC A B C 000

 P0 010 0 0 0

 P1 200 2 0 1

 P2 303 0 0 1

 P3 211 1 0 0

 P4 002 0 0 2

• State of system?

– We claim that the system is now deadlocked.

– Can reclaim resources held by process P0, but insufficient resources to
fulfill other processes requests.

– Deadlock exists, consisting of processes P1, P2, P3, and P4.

52

Dr. Tarek Helmy, ICS-KFUPM

Detection-Algorithm Usage

• When, and how often, to invoke the detection algorithm depends on:

– How often a deadlock is likely to occur?

– How many processes will be affected by the deadlock when it happens?

• If detection algorithm is invoked randomly, there may be many cycles in the

WFG and so we would not be able to tell which of the many deadlocked

processes “caused” the deadlock.

• In the extreme, we could invoke the detection algorithm every time a request

for allocation cannot be granted. But this makes an overhead computing.

• The detection algorithm can be invoked whenever the CPU utilization drops

below 40 % or once per hour.

53

Dr. Tarek Helmy, ICS-KFUPM

Recovery from Deadlock: By Process Termination

• If deadlock has been detected by the OS, the OS should be able to recover it.

• Terminate all deadlocked processes. It is too expensive as these processes

may have computed for a long time and later will be repeated, if the process

was in the middle of updating or printing a file, terminating it makes an errors.

• Abort one process at a time until the deadlock cycle is eliminated. This means

the detection algorithm should be invoked many times to check and this

makes overhead computing.

• Partial termination means there should be a mechanism to select the process

to be terminated, like the CPU scheduling.

• In which order should we choose to abort?

– Priority of the process.

– How long process has computed, and how much longer to completion.

– Resources the process has used.

– Resources process needs to complete.

– Is the process interactive or batch?

– How many processes will need to be terminated.

• Starvation: Same process may always be picked as victim, we should include
number of rollback as a cost factor.

54

Dr. Tarek Helmy, ICS-KFUPM

Recovery from Deadlock: By Resource Preemption

• Preempt some resources from the processes and give them to other

processes until the deadlock cycle is broken. Three issues need to

be addressed.

– Selecting a victim: we must determine the order of preemption to

minimize the cost. i.e. priority, age of the process with the

resource.

– Rollback: We must return the process to a safe state, and restart

the process form that state. Need to save the state of the process

with the preempted resource.

– Starvation: Same process's resources may always be picked as

victim, we should include number of rollback as a cost factor.

55

Dr. Tarek Helmy, ICS-KFUPM

An Integrated Deadlock Handling Strategy

• Each deadlock strategy has its strengths and weaknesses.

• Using a single strategy may be inefficient.

• Modern OSs combine the three basic approaches (Prevention, Avoidance,
Detection)

• Allowing the use of the optimal approach for each of resources in the system.

– For I/O devices, and files as resources use Prevention through resource
ordering, no selection among pending processes.

– For main memory use Prevention through Preemption, a process can
always be swapped-out.

– For assignable devices: if device-requirement information is available use
Avoidance.

– For swap space use Avoidance, since maximal storage requirements are
known in advance.

• Use most appropriate technique for handling deadlocks within each class.

– For database records that need locking first and then updating

– Deadlocks occur frequently because records are dynamically requested
by competing processes.

– DBMSs, therefore, need to employ deadlock detection and recovery
procedures.

56

Dr. Tarek Helmy, ICS-KFUPM

Parallel Processing

P1

P2

P3

time

No of executing processes ≤ the number of CPUs

CPU

CPU

CPU

Concurrency Vs. Parallelism

57

Dr. Tarek Helmy, ICS-KFUPM 58

Concurrency Vs. Parallelism

Concurrent Processing

Number of simultaneously executing processes > number of CPUs

P1

P2

P3

time

CPU

Dr. Tarek Helmy, ICS-KFUPM

The End!!

Thank you

Any Questions?

59

