BSOS a0

Operating Systems ICS 431

Foor L@@y

Ch. 14: Protection

Dr. Tarek Helmy El-Basuny

Dr. Tarek Helmy, KFUPM-ICS

—

B agaa0h

FEEf L L LD

BSOS a0

Protection and Security Definitions

« The Protection and Security concepts are often used together, and the
distinction between them is a little bit ambiguous.

Foor L@@y

« Let me hear from you about the meaning of Protection and Security in computer
system.

* Protection refers to a mechanism for controlling the access of running
processes, or users to the resources of the computer system. i.e.

* Processes or users in an operating system must be protected from one
another's activities.

e Security is the process of:

— Detecting and preventing unauthorized usage of your system’s resources by
outsider users or processes. i.e.

« Protect the system from viruses, worms, malware or remote hacker
Intrusions.

(\&)
FEEf L L LD

Dr. Tarek Helmy, KFUPM-ICS O agaa0h

BSOS a0

Protection and Security Definitions

» Types of misuse are :

— Intentional/planned misuse (performed with purpose and intent). i.e.

Foor L@@y

* Trying to violate University IT Policies.
* Trying to download of copyrighted materials.
— Accidental/unplanned/unintended misuse (by chance). i.e.

* You forgot to logout your account and someone gets access to it.

— Protection is to prevent either accidental or intentional misuse.

« Guarding users’ data and processes against internal threats by other
users or processes of the same system (Internal to OS).

— Security is to prevent intentional misuse.

« Guarding users’ data and processes against external threats, by users
or processes outside the system (external to OS).

« Ch. 15in the text book discusses more about Security.

[99]
FEEf L L LD

Dr. Tarek Helmy, KFUPM-ICS O agaa0h

BSOS a0

A Policy & A Mechanism Definition

— A Policy: Decides which/what/who can access an object and in which mode?

. For instance, FCFS, SJF are kind of polices to know which process can
access the CPU?

Foor L@@y

. Policies are ways to choose which activities to perform.
— A Mechanism: Determines, how to do something?

. Is to know how? For instance, how processes can be granted resources?

« Mechanisms are the implementations that enforce policies.

* Protection: Mechanisms and Policies for:

* Preventing processes and users from accessing objects they are not
allowed to access.

* |ssues internal to OS.

« Security: Mechanisms and Policies for:
» Authentication of users,
« Validation of messages,
» Malicious intrusion detection, etc.
» Issues external to OS.

AN
FfLo L@

Dr. Tarek Helmy, KFUPM-ICS O agdaaEn

BSOS a0

Security & Protection in OS

. Protection and Security allow the OS to do:

1. Authentication: who is the user?

Foor L@@y

2. Authorization: who is allowed to do what?

3. Enforcement: make sure that users/processes do only what they are

authorized to do.

Term Explanation

Authentication Verifyving the identity of a user. Operating systems most often
perform authentication by knowledge. That 1s, a person claiming
to be some user X is called upon to exhibit some knowledge
shared only between the OS and user X, such as a password.

Authorization Authorization has two aspects:
(1) Granting a set of access privileges to a user, for example,
some users may be granted read and write privileges to a file,
while others are granted read-only privileges,
(2) Verifying a user’s right to access a resource 1n a specific man-
ner.

(¥,
FEEf L L LD

Dr. Tarek Helmy, KFUPM-ICS O agaa0h

Foor L@@y

L B RN RN R R
Goals/objectives of Protection and Security in OS
Goal Description
Secrecy Only authorized users should be able (o access information. Ths
goal1s also called confidentiality.
Privacy Information should be used only for the purposes for which it is
inended and shared.
Authenticity It should be possible to verify the source or sender of mformation,
and also verily that the mformation s preserved in the form m which
1t was created or sen.
Integrity It should not be possible to destroy or corrupt information.
6
Dr. Tarek Helmy, KFUPM-ICS T}

FEEf L L LD

BSOS a0

Outline of Ch. 14: Protection

Foor L@@y

« Goals and Guiding Principles of Protection

« Domain of Protection

 Access Matrix

* Implementation of Access Matrix

« Language-Based Protection

Dr. Tarek Helmy, KFUPM-ICS

J
FEEf L L LD

B agaa0h

BSOS a0

Protection Goal and Principle

« A computer system is a collection of processes and objects,

* Objects means hardware (CPU, memory segments, printers, disks, ...)
or software (files, data structure, messages, etc.).

Foor L@@y

« Each object has a unique name and can be accessed through a well-
defined set of operations.

 Goal of Protection:

« To ensure that each object is accessed correctly and only by those
processes/users that are allowed to do so.

 Guiding Principles of Protection:

* Principle of least privilege: Processes, users and systems should
be given just enough privileges/rights to perform their tasks.

« Separate policy from mechanism:
« Policy: the code built in the OS that says who can do what.

« Mechanism: the code built in the OS to know how to do something.
Dr. Tarek Helmy, KFUPM-ICS T}

(02e]
FEEf L L LD

BSOS a0

Domain of Protection

Foor L@@y
[]

object.

. The operations that are possible depend on the object,

A Domain = a set of objects and a set of access-rights that a process within
that domain can do on these objects.

. Access-rights: is a set of all valid operations that can be performed on the

" |.e., data files can be created, opened, read, written, closed, deleted.

. At any time, a process should be able to access only those objects that it
currently required to complete its task.

= Example: When process P invokes procedure A, A should be allowed to
access only its own local variables, along with the parameters explicitly

passed to it.

= A should NOT be able to access other variables of P.

. Example: A compiler should be able to access only well defined subset of

files (source, linked library files) related to the file to be compiled.

Dr. Tarek Helmy, KFUPM-ICS

O
FEEf L L LD

B agaa0h

BSOS a0

Domain Structure

A domain can be realized in variety of ways:

depends on the identity

Foor L@@y
[]

of the user.

— Domain switching corresponds to logout and login of users.

 Each user can be a domain: in this case, the set of objects that can be accessed

« Each process may be a domain: in this case, the set of objects that can be

accessed depends on the identity of the process.

— Domain switching corresponds to sending messages and waiting for responses.

 Each procedure/method may be a domain: in this case, the set of objects that
can be accessed corresponds to the local variables defined within the procedure.

— Domain switching occurs when a procedure call is made.

e Domains may share access rights:

— For example in the following domains, D1, D2, and D3.

— The print access right of <O4, {print}> is shared by D2 and D3.

This means a process executing in either of these two domains can print O4.

D.

< O, {read, write} =
< O4, {read, write} >
< O,, {execute} =

D,

<< O, {write} > [IR

Ds

< O,, {execute} =
< Og, {read} =

Dr. Tarek Helmy, KFUPM-ICS

>
FEEf L L LD

B agaa0h

BSOS a0
Association between a Process & a Domain

« The association between a process and a domain may be either static or
dynamic.

« If the association is static: it means the set of objects available to a process is
fixed through out the life time of a process.

« If the association is dynamic: it means the OS allows the process to switch from
one domain to another.

 For example, consider the dual-mode of the operating system execution.

— When a process executes in kernel mode, it can execute privileged
instruction and thus gain complete control of the computer system.

— On the other hand, if the process executes in a user’s mode, it can invoke
only non-privileged instruction.

Foor L@@y

FEEf L L LD

Dr. Tarek Helmy, KFUPM-ICS O agaa0h

BSOS a0

Access Matrix: To implement Protection Domains

Basic elements of the system are:
— A process: An entity capable of accessing objects.

Foor L@@y

— An object: Any resource to which access is controlled.

* i.e. Memory, Files, CPU, Disks, Segments of Memory,

— An access right: The way in which an object is accessed by the
process.

« Examples: read, write, and execute a file.
« Protection Domain = a set of objects and a set of access-rights.

« Access Matrix: represents the protection domains and access rights:

— Rows represent the domains (users, processes, procedures, etc.).
— Columns correspond to the objects/resources.

— Matrix entries specify the access rights to an object in the
corresponding domain.

o
FEEf L L LD

Dr. Tarek Helmy, KFUPM-ICS O agaa0h

BSOS a0

Protection Domains: Example 1

Foor L@@y
J

U

and O,) such that:

— All students are going to log into to D,

— All faculty members are going to log into to D,

— All system administrators are going to log into D,
O With the following access-rights to the objects O,, O,, O, and O,.

— Students’ processes can execute O, and read & write O,

— Faculty’ processes can write O, and print O,
— System administrators’ processes can execute O, read O, and print O,
4 That can be represented as following where O, is shared between D, and D,.

—

f g, {exmecute}s \._I
l\\ =3y, {read, write}= /,-"

T— —

Drormairn 1

6, {wrrite}=

T — -

Crormainm 2 Drormain 3

= {b <ox fomecur™
'\/ g, {read}j./,r

Dr. Tarek Helmy, KFUPM-ICS

Creating a protection domain for a university to control the access-rights for
students, faculty and administration to the objects.

Assume we have three domains (D,, D,, and D;), and four objects (O,, O,, O,

o
FEEf L L LD

B agaa0h

Foor L@@y

BSOS a0

Access Matrix: Example 1

* The access matrix of the previous example that specifies the access control

policy for the system can be represented as:

— 3 rows for the domains and 4 columns for the objects as following.

Object 1 Object 2 Object 3 Object 4
Domain1 | [read, write] | [execute]
Domain 2 [write {print]
Domain3 | [execute] {read] {print]

This access matrix allows:

« Astudent in (D,) to read & write Object, and execute Object..
« A faculty member in (D) to write Object, and to print Object,.

« An admin in (D,) to execute Object,, read Object; and print Object,.

Dr. Tarek Helmy, KFUPM-ICS

=
FEEf L L LD

B agaa0h

BSOS a0

Access Matrix: Example 2

« Column represents the objects (F,, F5, F; and printer).
* Row represents a domain (Dq, D,, D3, and D).
« Access (i,]) is the set of operations that a process executing in Domain ; can do on
Object ;.
« Process/users working in:
— Domain,; can Read F; and F;
— Domain, can use printer
— Domaing can Read F, and execute F;

Foor L@@y

l Objects l l

object
: = = = printer
domain
E D, read read
Domains D print
Dg read execute
read read
—> D4 write write

« Can a process executes in Domain; switch into Domain,?

Dr. Tarek Helmy, KFUPM-ICS

B agaa0h

9
FEEf L L LD

BSOS a0

Foor L@@y

O Process in domain D, can switch to domain D,
0 Process in domain D, can switch to domain D,

Access Matrix with Domains as Objects

0 Use operation “Switch” on an object “Domain”

0 A process in D, has read access to F, and F;, and
0o Can switch to D, in order to print on the laser printer,

0 Adding domains as objects to the access matrix so that a process can switch from one
domain to another:

O Then switch to D if it wants to obtain read access to , and execute access to F3,
0 Then switch to D, to obtain write access to F; and F.

obiect | o Fa Fa L= [& =y /B
domain printer
D, read read switch
D, print switch | switch
D read |execute
= :\?razicé \fﬁtcé switch

Dr. Tarek Helmy, KFUPM-ICS

@D —Ca <m0

>
FEEf L L LD

B agaa0h

BSOS a0

Access Matrix with Copy, Owner and Control Rights

Access matrix can be expanded to support dynamic protection.

Foor L@@y

— By adding or removing any access rights.

« Special access rights:

— Copy operation from O; to O, (access allows an object to copy,

transfer rights from any domain)

— Owner of O, (access allows an object to copy, transfer or delete

rights from any domain).

— Control allows a process in this domain to remove any right from

that domain, D; can modify D; access rights.

Dr. Tarek Helmy, KFUPM-ICS

3
FEEf L L LD

B agaa0h

Foor L@@y

O

O

BSOS a0

Access Matrix with Copy Rights

With copy rights (denoted with an *),
a domain can copy an access right to
another domain.

Domain D, can copy read access of
F, into D,.

Domain D1 can copy write access of
F3 to D3.

F

Fs

execute

write*

execute

read”

execute

Process running in D,
— Has a copy right of F,
— Can copy a read operation to D,

execute

(@)

object

domain

F

Fs

Process running in D,
— Has a copy right of F,
— Can copy a write operation to D,

execute

write*

execute

read”

execute

execute

vmd

write

Dr. Tarek Helmy, KFUPM-ICS

(b)

B agaa0h

o0
FEEf L L LD

BSOS a0

Access Matrix with Owner Rights

O

Owner - a process executing in a
domain with Owner right access can
add or remove any rights in the
column ;.

Foor L@@y

o D, can give itself write* access to F,
and then give D, write access.

o Can give D, write access to F; (even
though D, does not have write
privileges).

* Process running in D,
— Owns F,

— Can add and remove any access right
on F,in D, and D,.

object
Fi F Fs
domain
D owner .
! execute I
D mad | T8l
- owner .
write
D, execute
(a)
object
Fi F> Fy
domain
D owner .
! execute write
owner read*
D, read* owner
write* write
D, \4 write write W

Dr. Tarek Helmy, KFUPM-ICS

(b)

o
FEEf L L LD

B agaa0h

BSOS a0

Access Matrix with Control Rights

0 Control - applicable only to domain objects

o Can remove any rights from the row .

Foor L@@y

A process executing in domain D, can switch to D, and also has a right to
modify all access rights in D,.

-

object
’ ENE o L= 5T (R TR B T)
domain printer
D, read read switch
D ; . switch
> print switch Control
Dy read |execute
D, write write switch

System designers and users are responsible for defining what to be included in the
Access matrix. But how to implement the Access Matrix?

Dr. Tarek Helmy, KFUPM-ICS

Wmaaa

FEEf L L LD

Foor L@@y
[)

BSOS a0

Implementing the Access Control Matrix

Access Control Matrix is the security model of protection in the computer

system. It is used to define the rights of each process executing in the domain
with respect to each object.

* The Access Control Matrix can be implemented in different ways:

1. The simplest implementation of the access matrix is to use a Global Table.

Dr. Tarek Helmy, KFUPM-ICS

A global table is used to store ordered triples <Domain, Object, Rights-set>
Whenever an operation M is executed on an object O; within domain D,

The global table is searched for a triple <D, O;, R,>, with MeR, (R, are the
authorized access rights).

If this triple is found, the operation is allowed to continue; otherwise an error
IS raised.

Disadvantages:

— Since objects or domains are too many and that means the table could be %
too lengthy and can not be kept in the main memory. a

— More I/O acess is required to get the table if the OS uses virtual memory to
hold the table.

d
4
d
l
I'm
|

B agaa0h

BSOS a0

Implementing the Access Matrix

2. Access Control Lists:

Foor L@@y

Placing on each object a list of rights associated to that object.
For example, if we have F,, F, and F3, and users A, B and C, an access control list

might look like:

B
C

RW-

RW-
R--

The rights are R (Read), W (Write) and X (Execute).

A dash indicates the user does not have that particular right.

A RW- R-- RW-

RWX
R-X

l.e. user A does not have permission to execute F5, and C has no rights at all on F.
A control list of each object contains an ordered pairs [Domain, rights-set]
Whenever an operation M is executed on an object O; within domain D;, the listis

searched for O; looking for an entry [D;, R,], with M € R,.

If the entry is found, the operation is allowed; otherwise the access is denied.

Frocooc

il - 1 A PR B o A I

=

_= = FRWOW D — -

Dr. Tarek Helmy, KFUPM-ICS

——
;
H
m'!
FEEf L L LD

B agaa0h

BSOS a0

Implementing the Access Matrix

3. Capability List
— Storing on each Domain a list of rights the user has for every object.
— To execute an operation M on an object Oj, the capability list is searched.
— Having of the capability means access is allowed.
— The capability list must be protected to avoid user modification.
— Only the OS should be able to maintain the capability list.

Foor L@@y

-

F1:RWX F2:R-X F3:RW-
B F1:--- F2:RWX F3:R--

Ovvner
Process
User
sSppacs

(= == ==
== == = =W F=2-=>=< | | U <ernel
F= :RwWw>< ~ | | =r===
colist

=

[\ O]
[99]
FEEf L L LD

Dr. Tarek Helmy, KFUPM-ICS O agaa0h

BSOS a0

4. A Lock-Key Mechanism:

Implementing the Access Matrix

Foor L@@y

It compromises between Access List
and Capability List.

Each object has a list of unique bit
patterns called locks

Each Domain has a list of unique bit
patterns called Keys

A lock-key is managed by the OS on Only OS can che
behalf of the domain. the key with each |

There is no direct access by the user

A process executing in a domain can
access an object only if that domain
has a key that matches one of the
locks of the object.

24
Dr. Tarek Helmy, KFUPM-ICS O agaa0h

FEEf L L LD

Foor L@@y

BSOS a0

Revocable Access Rights

The OS must be able to remove/
revoke/cancel access rights when
necessary.

Various options to remove the
access right of a domain to an
object:

— Immediate or delayed?

— Selective (domain or user) or
general?

— Partial (rights) or full (all
rights)?
— Temporary or permanent?

The implementation of the
Access Control Matrix dictates
how easy the above issues are
implemented.

l.e. with control lists, the list is
searched for any access-right and
remove it.

Implementing Revocation using
capability list requires:

Reacquisition: Periodically delete
capabilities from each domain. If the
domain still needs the access right, it
will ask for it again

Back-pointers: Each object has a set
of pointers to all domains which have
access rights.

Indirection: Capabilities point to a
global table (whose location is known
to the OS). To revoke a right, just edit
the global table.

Keys: If the Lock and Key method is
used, simply change the lock values
and force the processes/users to
request new keys.

Dr. Tarek Helmy, KFUPM-ICS

[\®
W
FEEf L L LD

B agaa0h

BSOS a0

HW or Language-Based Protection

Motivation

Foor L@@y

— Comprehensive access validation requires considerable overheads
and satisfying all protection goals by the OS may be difficult.

— There should be a support form HW or from the programming

languages.

— Policies for resource use may vary

 Merits

— A HW or language-based system can provide security in addition to
OS mechanisms.

— Software support when hardware supports are not available.

Dr. Tarek Helmy, KFUPM-ICS

26
O agagamhk

FEEf L L LD

BSOS a0

Example: Protection in Java

« Language implementation can provide software for protection
enforcement when automatic hardware-supported checking is

Foor L@@y

unavailable.
* Protection is handled by the Java Virtual Machine (JVM)

« Aclass is assigned a protection domain when it is loaded by the JVM.

 The protection domain indicates what operations the class can (and
cannot) perform.

« |f alibrary method is invoked that performs a privileged operation, the
stack is inspected to ensure the operation can be performed by the

library.

[\ O]
J
FEEf L L LD

Dr. Tarek Helmy, KFUPM-ICS O agaa0h

L u. '
=4 Ch. 14 Protection: Summary

* Protection and Security Concepts
* Objectives/Goals of Protection and Security

« Protection: Mechanisms and policies to prevent processes and users from accessing or changing
objects they are not allowed to access.

* Principles of Protection: Least privilege and Separating policy from mechanism.

« Domain of Protection: Each domain defines a set of objects and the types of operations that may be
invoked on each object.

* Realizing domain in the OS. A domain may be a user, a process, a procedure, a function, etc.
* The association between a process and a domain may be either Static or Dynamic.
* Access Matrix to represent domains:

Foor L@@y

— Rows represent the domains.
— Columns correspond to the objects.
— Entries specify the access rights to an object in the corresponding domain.

« Access matrix can be expanded to support domain switching and ability to modify the access rights
through Copy, Owner, Control operations.
 Implementation of Access Matrix:
— Use aglobal table consisting of a set or ordered triples <Domain, Object, Rights-set>
— Access control lists by placing on each object a list of users and their associated rights to that

: L |

object. 3

— Capabilities storing on each Domain a list of rights the user has for every object. a

« The OS must be able to revoke/cancel access rights when necessary: .
— Immediate or delayed? Or Selective (domain or user) or general? Partial (rights) or full (all rights)? <
Temporary or permanent.)3 a

L |

Dr. Tarek Helmy, KFUPM-ICS AL L L

BSagaaah

FoLo Ll

Dr. Tarek Helmy, KFUPM-ICS

The End!!

29
BaaaaTh

FREfFL L LT

