
Dr. Tarek Helmy, KFUPM-ICS
1

Ch. 9 Virtual Memory

Dr.Tarek Helmy El-Basuny

Weeks 11-12

Operating Systems ICS 431

Dr. Tarek Helmy, KFUPM-ICS
2

– Introducing of the Virtual Memory

– What do we want to achieve by using virtual memory?

– What are the problems do we address through virtual memory?

– How does virtual memory work?

– The meaning of Demand Paging, Thrashing concept,

– Page Fault and the Cost of Handling a Page Fault,

– What are the Advantages of Virtual Memory? (less I/O time, copy on write, memory mapped files)

• Page Replacement Polices

– Local and Global replacement strategies.

– First In First Out (FIFO), (Examples with different frame numbers allocated),

– Optimal Page Replacement (OPR),

– Least Recent Used (LRU),

– Most Recent Used (MRU),

– Second Choice Page-Replacement,

– Enhanced version of Second Choice Page-Replacement,

– Page-Buffering Algorithms.

– Relationship between the allocated frames and the page fault frequency.

• Allocation of Frames to processes to minimize Thrashing

• Based on the size of the process or

• Based on the working set of the process or

• Based on the Fault frequency rate

– Other Considerations that affect Thrashing

• How different Operating Systems manage the MM and VM?

Ch. 9 Virtual Memory (VM)

Dr. Tarek Helmy, KFUPM-ICS
3

Virtual Memory

• With virtual memory support, the OS can address memory outside what

is physically installed on the system.

• This non-physical memory is called Virtual Memory (VM), and

– It is implemented by using a piece of your machine’s hard disk that's

set up to emulate physical memory.

– This hard disk storage is actually a single file called a Page File, or

a Swap File.

• If the physical memory is full and a page is urgently required:

– The OS makes room for new page by taking infrequently-used page

that's currently in physical memory and swaps it out to the

page/swap file.

• No matter how much Main Memory (MM) your system has, Windows

OS still creates and uses a page/swap file as a VM.

Dr. Tarek Helmy, KFUPM-ICS
4

Virtual Memory

• With Virtual Memory (VM): the OS can execute a process that may not be

completely in the MM because the process size is lager than the MM size.

• VM is the OS abstraction that gives the programmer the illusion of an address

space that may be larger than the physical memory address space.

– Means allows user programs to be larger than physical memory.

• Virtual memory: same as the MM/PM, it can be implemented using either

paging or segmentation but paging of the segments is the most common.

• VM technique is possible due to the following facts:

– Only part of the process (most frequently used pages) needs to be brought

into the MM for execution to maximize the concurrency level. i.e.

• Error/Exception handler routines are very rarely used. So, why don’t we load them

on demand to the MM/PM?

• Arrays, lists or tables are often allocated more memory than they actually need.

– An array may be declared 100 by 100 element, while it is rarely be 10 by 10

element at a time. So, the memory assigned to these arrays/tables can be used.

Dr. Tarek Helmy, KFUPM-ICS
5

How to deal with a Process’s size  Size of PM?

• If the address space of the process is  the size of PM, then full load can
be done unless we want to maximize the concurrency level through
partial load.

• When the address space of the process is  the available PM.

– A part of the process will be loaded into the PM/MM.

– The rest of the process will be left on VM.

– Swapping in between VM and PM will be supported through a certain
policy.

• We will investigate how does the OS support that latter?

Dr. Tarek Helmy, KFUPM-ICS
6

Advantages of Partial Loading

• A process can now execute even if it is larger than the available main

memory space.

– It is even possible to use more bits for logical addresses than the bits

needed for addressing the physical memory.

• More processes can be maintained in MM and this increases both the

CPU utilization and throughput.

– Only load in some of processes' pages.

– With more processes in main memory, the concurrency level will be

more.

• Demand Paging: bring a page (not a process) into MM only when it is

needed. Rather than swapping the entire process, we use a lazy swapper

that never swap a page into MM unless that page is needed. It leads to:

– Less I/O needed for swapping or loading

– Less memory needed

– Faster response

Dr. Tarek Helmy, KFUPM-ICS
7

Support Needed for Virtual Memory

 A process needs to be broken up into pieces (pages or segments).

 Pages or segments of the same process do not need to be located

contiguously in main memory.

 To accommodate as many processes as possible (multiprogramming), only a

few pages of each process is maintained in MM/PM.

 Memory references are dynamically translated into physical addresses at

the run time.

 The OS must not swap out a piece of a process just before that piece is

needed to avoid thrashing.

 Swapper manipulates the entire processes,

 Pager is concerned with the individual pages of a process,

 We thus use pager in connection with demand page.

 OS must be able to manage the movement of pages and/or segments

between virtual memory and main memory through replacement policies.

Dr. Tarek Helmy, KFUPM-ICS
8

Process Execution with Existence of VM

• The OS brings into the main memory only few pages (working set) of the

process.

• The working set is the most frequently used pages in the process.

• We will discuss later, how the working set of the process will be set?

• Each page/segment table entry has a present bit that is set only if the

corresponding page/segment is in MM/PM.

• An interrupt (memory fault) is generated when the memory reference is on a

page/segment that is not present in MM/PM.

• The OS places the process in a blocking state if it has a page/segment fault.

• The OS issues a disk I/O read request to bring the needed page/segment into

the MM.

• The OS may dispatch another process to run while the disk I/O takes place.

• An interrupt is issued when the disk I/O completes to place the blocked process

in the ready state.

Dr. Tarek Helmy, KFUPM-ICS
9

Demand Paging

• When a process is to be swapped in, the
pager guesses which pages will be used
before the process is swapped out again.

• Instead of swapping in a whole process,
the pager brings only those necessary
pages. Thus decreasing the swapping time.

• How to represent fact that a page of VM is
not yet in memory and still on a disk?

• With each page table entry a valid–invalid
bit is associated
(1  in-memory, 0  not-in-memory)

• Page is needed  reference to valid–
invalid bit

– Invalid reference  Not-in-memory 
bring to memory

• Initially valid–invalid but is set to 0 on all
entries.

• During address translation, if valid–invalid
bit in page table entry is 0  page fault,
means replacement algorithm should be
invoked.

Dr. Tarek Helmy, KFUPM-ICS
10

Steps in Handling Page Fault

• When a process needs a page.

1. The OS checks the page table of

this process to determine the

validity of the page.

• Invalid reference  Page fault

exception.

2. Find a free memory frame

3. Read desired page from disk

• Under control of I/O controller

4. Changes invalid bit of page to valid

5. Restarts process that was

interrupted by the exception.

• Is it easy to restart a process? Least

Recently Used

• What happens if there is no free

frame?

Dr. Tarek Helmy, KFUPM-ICS
11

Cost of Handling a Page Fault with VM

• Checking page table, trapping an error, finding free memory frame (or

finding victim page to be swapped out) needs about 200 - 600 s

• Disk seek and read takes about 10 ms (seek time is the amount of time

required for the read/write heads to move between tracks over the

surfaces of the platters)

• Memory access takes about 100 ns

• Page fault = (swap page out + swap page in + restart overhead)

• Page fault degrades the performance by approximately 100 ms!

– This doesn’t even count all the additional things that can happen

along the way.

• Better not have too many page faults!

• If we want no more than 10 % degradation, can only have 1 page fault

for every 1,000,000 memory accesses.

• OS must do a great job of managing the movement of data between VM

and MM.

Dr. Tarek Helmy, KFUPM-ICS
12

Possibility of Thrashing

• To accommodate as many processes as

possible, only a few pages of each

process is maintained in MM.

• But MM may be full: when the OS brings

one page in, it must swap one page out

• The OS must not swap out a page of a

process just before that page is needed.

• If it does this too often this leads to

trashing:

– The processor spends most of its

time swapping pages in and out

rather than executing user’s

processes.

Dr. Tarek Helmy, KFUPM-ICS
13

Effective Access Time & Page Fault

• Demand paging can have a significant effect on the performance of a

system.

• As long as there is no page faults:

• The Effective Access Time (EAT) = Memory Access time (MA).

• Let p the Page Fault Rate 0  p  1.0

– If p = 0 no page faults

– If p = 1, every reference causes a fault

 EAT = (1 – p) * Memory Access (MA)+ p *(page fault cost)

• Effective Access Time (EAT) = (1 – p) * MA+ p (page fault overhead +
swap page out overhead+swap page in overhead+restart overhead)

Example: Memory access time = 1 microsecond

• 50 % of the time the page that is being replaced has been modified and

therefore needs to be swapped out, (means p = .5).

• Page fault times =15 microsecond

 EAT = (1 – p) * 1 + p *(15) microsecond

Dr. Tarek Helmy, KFUPM-ICS
14

Page Replacement

• Page replacement: Find a page in memory, but not really in use,

swap it out. There should be an algorithm:

– Performance: we need an algorithm which will result in minimum

number of page faults. It must consider that same page may be

brought into memory several times.

• Temporal locality: Addresses that are referenced at some time Ts

will be accessed in the near future (Ts + delta time) with high

probability. Example : Execution in a loop.

• Spatial locality: Items whose addresses are near one another tend to

be referenced close together in time. Example: Accessing array

elements.

Dr. Tarek Helmy, KFUPM-ICS
15

Benefits of VM

• With demand Paging: Rather than swapping the entire process,

we use a lazy swapper that never swap a page into MM unless that

page is needed: this leads to:

– Less I/O needed

– Less memory needed

– Faster response

• Copy-on-Write: The basic idea of copy-on-write is to allow one or

more virtual pages of many processes (with the same contents) to

be shared by loading them into the same frame/s in the MM.

• Memory-Mapped Files: Uses VM techniques to treat file I/O as a

regular memory access.

Dr. Tarek Helmy, KFUPM-ICS
16

Copy-on-Write

• Copy-on-Write (COW) allows both parent and child processes to initially share

the same frame in memory for their pages of the same content.

• These pages are marked as COW. That means:

• If either the parent or the child process modified a shared page, only then

the page will be copied.

• COW allows more efficient process creation as only modified pages are copied.

• Only pages that may be modified need to be marked as COW.

• At the time of duplicating a page using COW, it is important to note where the

free frame is going to be allocated from.

• Many OSs provide a pool of free frames for such requests.

• Free frames are allocated from a pool.

• The allocated frames from the pool should be zeroed-out (erased) before being

allocated. This will be done by using a technique called zeroed-fill-on-demand.

P1 P2

Dr. Tarek Helmy, KFUPM-ICS
17

Memory-Mapped Files

– Typically I/O devices have slower access time than CPU and memory.

– A system call and disk access is required every time the file is accessed.

– This requires too much CPU involvement in I/O operations.

• Memory-mapped Files allows file I/O operations to be treated as routine memory

access by mapping a disk block to a frame in memory.

• A file is initially read using demand paging. A page-sized portion of the file is read

from the file system into a physical frame.

• Subsequent reads/writes from/to the file are treated as ordinary memory accesses.

• Simplifies file access by treating file I/O through memory rather than read(), write()

system calls.

• Also allows several processes to map the same file into the shared frames in

memory if the file is shared.

Dr. Tarek Helmy, KFUPM-ICS
18

Page Replacement

• What if there’s no free frame left in the MM on a page

fault?

– Free a frame that’s currently being used

1. Select the frame to be replaced (victim).

2. Write the victim back to disk if it has been modified.

3. Change page table to reflect that the victim is now

invalid.

4. Read the desired page into the newly freed frame

5. Change page table to reflect that the new page is

now valid.

6. Restart faulting instruction.

• Optimization: no need to write the victim back if it has

not been modified (need dirty bit per page table entry).

• Highly motivated to find a good replacement policy

– How do we choose the best victim in order to

minimize the page fault rate?

• Is there an optimal replacement algorithm? If yes,

what is it?

Dr. Tarek Helmy, KFUPM-ICS
19

Replacement Policy

 The OS uses some polices to select a frame in MM to be replaced when a

new page is required to be brought into the MM.

 This occurs whenever the MM is full (there is no free frame available).

 Not all frames in the MM can be selected for replacement.

 Some frames are locked (cannot be paged out): i.e.

 Frames allocated to the OS kernel,

 Frames used for data structures used in the management,

 Frames used for memory mapped files or for buffering or spooling.

 etc..

 The replacement policy should have lowest page-fault rate.

• We can evaluate the replacement policy by running it on a particular string

of memory references (reference string) and compute the number of page

faults [needed to do the replacement] on that string.

Dr. Tarek Helmy, KFUPM-ICS
20

Global vs. Local Replacement

 The OS might decide that the set of pages considered for replacement be:

 Local: Limited to those of the process that has suffered the page fault.

 Global: The set of all pages in unlocked frames.

• Local Replacement: the OS selects for replacement a frame from the allocated

frames of the same process.

– The set of pages in memory for a process is affected by the paging behavior of

only that process.

• Global Replacement (GR): OS selects for replacement a frame from the set of all

frames assigned to any process; one process can take a frame from another.

– For a high priority process, the OS can select from either its own frames or from

the frames of any lower priority process.

– This means a high priority process can increase its frames at the expenses of the

low priority process.

– A process can not control its own page fault rate.

– The thrashing depends not only on the paging behavior of that process but also

on the paging behavior of other process.

• A bad replacement choice increases the page fault rate and slow process

execution, but does not cause incorrect execution.

Dr. Tarek Helmy, KFUPM-ICS
21

Thrashing with Global Replacement

• To maximize the CPU utilization, OS increases the degree of concurrency by loading

more processes to the MM.

• With the use of global replacement, process’s page fault affects each other and this

causes propagation of thrashing.

• As the degree of multiprocessing increases the CPU utilization increase until a

maximum is reached. If the degree of multiprocessing increases further, thrashing

propagates and the CPU utilization drops sharply.

• Domino-style thrashing: if one process has page faults, evicting another process’

page, and when this process runs, it will evict yet another process’ pages, etc.

• We can limit the effects of thrashing by:

• By using local replacement: if one process starts thrashing, it can not steal frames

from another process and causes it to thrash too.

• By predicting its working set and provide a process as many frames as it needs.

• How do we the working set: by looking at how many frames a process is currently using

and predicts the future needs. We will see how in the coming slides.

Dr. Tarek Helmy, KFUPM-ICS
22

The First-In-First-Out (FIFO) Policy

• First-In-First-Out

– Be fair, let every page lives in memory for about the same amount of time,

then replaces it.

 Treats page frames allocated to a process as a FIFO queue.

 When the buffer is full, the oldest page is replaced, the one at the head of

the queue.

 A frequently used page is often the oldest, so it will be repeatedly

paged out by FIFO.

 Simple to implement

Requires only a FIFO queue.

FIFO Queue

Dr. Tarek Helmy, KFUPM-ICS
23

FIFO Page Replacement: Example-1

1. For the following example: the three frames are initially empty. The first three

references (7,0,1) cause page faults and are brought into these empty frames.

2. The next reference (2) replaces page 7 , because page 7 was come in first.

3. Since 0 is the next reference and 0 is already in memory, we have no fault for

this reference.

4. The first reference to page 3 results in page 0 being replaced, since it was the

first of three pages in the memory (0,1,2).

5. Because of this replacement, next reference to 0 will cause page fault.

6. Page 1 is then replaced by page 0.

15 page faults

Dr. Tarek Helmy, KFUPM-ICS
24

FIFO Page Replacement: Example-2

Dr. Tarek Helmy, KFUPM-ICS
25

FIFO Algorithm and the # of Frames

• To demonstrate the relation between the number of allocated

frames and the number of faults, consider the following example:

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 frames (3 pages can be in memory at a time per process)

• 4 frames (4 pages can be in at a time)

9 page faults

10 page faults

1

2

3

1

2

3

4

1

2

5

3

4

1

2

3

1

2

3

5

1

2

4

5

4 4 3

Dr. Tarek Helmy, KFUPM-ICS
26

FIFO Illustrating Example: Example-3

Memory

Memory

Memory

Dr. Tarek Helmy, KFUPM-ICS
27

FIFO Illustrating Belady’s Anomaly

1. We would expect that giving more memory to a process
improves the performance, More frames  less page
faults

2. This most unexpected result is known as Belady’s anomaly
(deviation from the common rule)

Dr. Tarek Helmy, KFUPM-ICS
28

Optimal Page Replacement (OPR)

• In OPR algorithm/policy, the OS selects for replacement the page that will not

be used for the longest period of time.

• Assume pages used recently will be used again soon.

– Eject out a page that will not be used for longest time

• Keep a time counter in each page table entry

– Choose page with lowest time value in the counter

– Periodically zero the counter

• This algorithm has the lowest page fault rate of all algorithms and never suffers

from Belady’s anomaly.

• What’s the problem with this algorithm?

• Policies to predict future references on the basis of past behavior.

• It requires a great deal of prediction and searching overhead.

Dr. Tarek Helmy, KFUPM-ICS
29

OPR Example

1. The three frames are initially empty. The first three references (7,0,1)

cause page faults and are brought into these empty frames.

2. The next reference (2) replaces page 7 , because page 7 will not be used

until reference 18, whereas page 0 will be used at 5, and page 1 at 14.

3. The reference to page 3 replaces page 1, as page 1 will be the last of the

three pages in memory to be referenced again.

4. It makes 9 faults while FIFO made 15 faults.

5. If we consider the first 3 faults common for all algorithms then OPR is

twice good of FIFO. The page fault frequency of OPR is 50% less than

FIFO.

9 Page Faults

Dr. Tarek Helmy, KFUPM-ICS
30

The Least Recent Used (LRU) Page Replacement

 The OS replaces the page that has not been referenced for the longest time.

• Least Recently Used implementation:

• On access to a page, timestamp it (Each page could be tagged in the page
table entry)

• The LRU page is the one with the smallest time value

• This would require expensive hardware and a great deal of searching
overhead.

– On a page fault, choose the one with the oldest timestamp

– What’s the motivation here?

– In practice, LRU is quite good for most programs

– Easley to be implemented by using a linked list of pages.

– Most recently used at front, least at rear and needs to update this list every
memory reference !

12 Page Faults

Dr. Tarek Helmy, KFUPM-ICS
31

OPT and LRU Comparison

 Example: A process of 5 pages with an OS that allocates 3 frames to the

process. What is the number of page faults if we use OPT and LRU?

 For comparison reasons, we are not counting initial page faults

when the memory is empty.

4 Page Faults

3 Page Faults

Dr. Tarek Helmy, KFUPM-ICS
32

LRU and MRU Implementation Methods

 Counter Implementation

 Every page entry has a counter; every time page is referenced

through this entry, copy the clock into the counter.

 When a page needs to be changed, look at the counters to determine

which one will be selected.

– Least Frequently Used (LFU) Algorithm: Replaces page with smallest

count. Based on the argument that the page with the smallest count was

probably just brought in and has yet to be used.

– Most Frequently Used (MFU) Algorithm: Replaces page with largest count

• When we use Most Frequently Used Algorithm to replace pages, it means the page with the

largest count will be replaced. In this case if the page has been referenced many times

during the initial phase of the process then its counter will be high and will be replaced.

One way to solve this problem and to keep this page in memory is to shift the counter right

by one at regular intervals to reflect the usage. I.e. if we used 3 bites to represent the

counter, then if it has the value “TWO”, means its value in the binary system will be 010. If

we shifted the bites to the right, the new value will be 001 “ONE” means shift to right

means divide the value by TWO. By this way, the counter will be decreased periodically to

keep the page in memory if it is important to avoid its replacement.

Dr. Tarek Helmy, KFUPM-ICS
33

LRU and MRU Implementation Methods

• Stack implementation: Keep a stack of page numbers.

– Whenever a page is referenced:

• Move it to the top

• The top of the stack is always the most recent

used (MRU), while the bottom is the LRU

– No search for replacement

• Reference bit

– With each page associate a reference bit, initially = 0

– When page is referenced (read/write to any byte of
the page) reference bit set to 1.

– After some time, the OS can determine which pages
have been used and which have not been used by
examining the reference bit.

– Replace the one which has a reference bit=0 (if one
exists).

• We do not know the order, however.

Dr. Tarek Helmy, KFUPM-ICS
34

– Introducing of the Virtual Memory

– What do we want to achieve by using virtual memory?

– What are the problems do we address through virtual memory?

– How does virtual memory work?

– The meaning of Demand Paging, Thrashing concept,

– Page Fault and the Cost of Handling a Page Fault,

– What are the Advantages of Virtual Memory? (less I/O time, copy on write, memory mapped files)

• Page Replacement Polices

– Local and Global replacement strategies.

– First In First Out (FIFO), (Examples with different frame numbers allocated),

– Optimal Page Replacement (OPR),

– Least Recent Used (LRU),

– Most Recent Used (MRU),

– Second Choice Page-Replacement,

– Enhanced version of Second Choice Page-Replacement,

– Page-Buffering Algorithms.

– Relationship between the allocated frames and the page fault frequency.

• Allocation of Frames to processes based to minimize Thrashing

• Based on the size of the process or

• Based on the working set of the process or

• Fault frequency rate

– Other Considerations that affect Thrashing

• How different Operating Systems manage the MM and VM?

Ch. 9 Virtual Memory (VM)

Dr. Tarek Helmy, KFUPM-ICS
35

Second-Chance (Clock) Implementation

• Arrange physical frames in a circle queue, with a clock hand.

• Associate a reference bit per frame.

• Sets the reference bit on memory reference to a frame.

• If the reference bit is not set, a page hasn’t been used for a while

• On page fault (a frame is needed):

1. Advance clock hand

2. Check the reference bit,

• If it is = 1, means the page has been used recently, clear it,

give it second chance and look for the another page.

• If it is = 0, this is our victim and the new page will be

inserted in that position.

• In the worst case, when all bits are set, the pointer cycles

through all of the pages, giving each page a second chance

and clear its bit.

• Can we always find a victim? If no then use FIFO.

Dr. Tarek Helmy, KFUPM-ICS
36

Second-Chance (clock) Page-Replacement Algorithm

Second Chance policy is an improved version of FIFO. This

is referred to as the Clock policy.

Dr. Tarek Helmy, KFUPM-ICS
37

Enhanced 2nd-Chance Algorithm

• Associate a pair of (reference and modify) bits with each

frame, (Unix versions) this means we have four possible

classes:

– (0, 0) neither recently used nor modified.

– (0, 1) not recently used but modified.

– (1, 0) recently used but clean.

– (1, 1) recently used but modified.

Dr. Tarek Helmy, KFUPM-ICS
38

Page-Buffering Algorithm

• The OS preserves a pool of free frames.

• When a page fault occurs, instead of waiting to look for

a victim frame using one of the replacement policies.

• The OS provides a free frame from the pool and reads the

required page into the free frame.

• This procedure allows the process to restart soon without

waiting for finding the victim page and/or writing it out.

• The OS may employ page replacement policy and when the

victim page is written out, its frame is added to the pool of

free-frames.

Dr. Tarek Helmy, KFUPM-ICS
39

Allocation of Frames to a Process

• How many frames should be allocated to a process?

• Shall we allocate the frames based on the size of process?

• Shall we allocate the frames based on the working Set of the process?

• Shall we allocate the frames based on the Page Fault Frequency?

• Shall we allocate the frames based on the Process Priority?

– Working set is set of pages in memory and has referenced in the last N

seconds/references (not easily known at the startup).

– Allocating a process fewer frames than its working set can quickly lead to

more page faults.

– One way to prevent many page faults is to avoid scheduling a process unless

it is allocated enough frames for its working set.

– Allocating a process more frames than its working set will minimize the

concurrency level (minimize memory utilization).

• Page fault frequency rate measures the page fault rate of the process.

– If it is too low: it means the process has been given more frames than it needs.

– If it is too high: it means the process has been given less frames than it needs.

– If too many processes have high page fault frequency then swap out one of these

processes and reassign its frames to the faulting processes.

Dr. Tarek Helmy, KFUPM-ICS
40

Frames Allocation Policy

• Shall we allocate frames equally or proportionally to processes?

• Which one is more fair and decreases the page fault frequency?

• Equal allocation: If m (100) frames and n (5) processes, then give each

m/n (20) frames. The reminder can be used as free-frame pool.

• Proportional allocation: Allocate available frames to each process

according to the size of process.

m
S

s
pa

m

sS

ps

i
ii

i

ii











for allocation

frames ofnumber total

 process of size

5964
137

127
2

564
137

10
1

1272

101

64











a

a

s

s

m

• A proportional allocation scheme based on priorities rather than size can be used.

Dr. Tarek Helmy, KFUPM-ICS
41

Working Set Model

• The set of pages that are in memory and have been

referenced in the last time interval Δ.

• The working set model is based on the assumption of locality

(set of pages that are actively used together and local

replacement is used).

• Do you think the size of the working set is static or varies during

the execution of the process depending on the locality of

accesses?

• If the number of frames allocated to a process covers its

working set then the number of page faults will be small.

• Schedule a process only if there is enough free frames more

than or equal to its working set.

• How can we determine/approximate the working set size?

Dr. Tarek Helmy, KFUPM-ICS
42

The Working Set Strategy

 The working set for a process at time t1, WS(Δ, t1), is the set of pages that

have been referenced in the last virtual time units t1.

 Virtual time = time elapsed while the process was in execution (i.e.:

number of instructions executed).

   working-set window  a fixed number of page references.

 Δ is used to define the working set window, the pages that in active use.

 If the page is no longer being used, it will drop from Δ.

 WS(Δ, t) is an approximation of the program’s locality.

 If Δ=10 as shown, then the working set at time t1is 5 (pages #1,2,5,6,7)

and at time t2is 2 (pages # 3,4).

Dr. Tarek Helmy, KFUPM-ICS
43

Working-Set Model

• We compute the working set size of process Pi (WSSi)= Total number of
pages referenced in the most recent  (varies in time)

– The optimal value for Δ is unknown and time varying

– if  too small will not overlap the entire locality.

– A locality is a set of pages that are actively used together.

– if  too large will overlap several localities.

– if  =   will overlap entire process locality.

• D =  WSSi = total demand frames from all processes.

• If D > m (total number of available frames)  Thrashing will occur because
some processes will not have enough frames.

• The OS monitors the working set of each process and allocates to that
process enough frames to cover its working set size.

• If there enough extra frames, another process can be initiated.

• If D > m, then suspend one of the processes.

• The pages of the suspended process are written out and reallocated to
other processes. The suspended process can be restarted later.

• The problem here is keeping track of the working set which is a dynamic
one, pages may be dropped out or newly come.

Dr. Tarek Helmy, KFUPM-ICS
44

The Working Set Strategy to avoid Thrashing

 The working set concept suggest the following strategy to determine the

resident set size

 Monitor the working set for each process.

 Periodically remove from the resident set of a process those pages that are

not in the working set.

 When the resident set of a process is smaller than its working set, allocate

more frames to it.

 If not enough free frames are available, suspend the process (until more

frames are available).

 i.e.: a process may execute only if its working set is in main memory

 Practical problems with this working set strategy

 Measurement of the working set for each process is impractical

Necessary to time stamp the referenced page at every memory

reference.

Necessary to maintain a time-ordered queue of referenced pages for

each process.

 Solution: rather than monitor the working set, monitor the page fault rate!

Dr. Tarek Helmy, KFUPM-ICS
45

 Page-Fault Frequency to avoid Thrashing

• A counter per process stores the # of faults (virtual time between page

faults).

• An upper threshold for # of faults (the virtual time) is defined .

• If the # of faults (amount of time since the last fault) is greater than the

threshold (i.e. page faults are happening at a high rate), then add new

frame to the resident set.

• If the # of faults is less than a lower threshold then discard frames from

the resident set.

Dr. Tarek Helmy, KFUPM-ICS 46

The Page-Fault Rate(PFR) Strategy to avoid Thrashing

 Define an upper bound U and

lower bound L for Page Fault

Rates (PFR).

 Allocate more frames to a process

if PFR is ≥ U.

 Allocate less frames if PFR is < L.

 The resident set size should be

close to the working set size W

 We suspend the process if the

PFR > U and no more free frames

are available.

L

U

W

Dr. Tarek Helmy, KFUPM-ICS
47

• Pre-paging

– Means we want to minimize the number of initial page faults by

brining at once into memory all the pages that will be needed.

– We keep with each process a list of the pages in the working set. If

we want to suspend the process due to a lack of free frames or I/O,

we should remember the working set of that process.

– When the process is to be resumed, the OS automatically brings

back into memory the entire working set for that process.

– There is a trade of between the cost of page fault and consuming

the memory by some of currently unused pages from the working

set.

Other Considerations to avoid Thrashing

Dr. Tarek Helmy, KFUPM-ICS
48

• Related to the hit ratio (Percentage of times that a page number is

found in the TLB) is a similar metric called TLB Reach.

• TLB Reach: The amount of memory accessible from the TLB.

• TLB Reach = (TLB Size) X (Page Size) (should be increased)

• Ideally, the working set of each process is stored in the TLB. Otherwise

the process consumes time resolving memory reference in page table

rather than in TLB.

• If we double the number of entries in TLB, we double the TLB reach.

Another approach for increasing TLB Reach is either:

• Increase the Page Size. This may lead to an increase in fragmentation

as not all applications require a large page size.

• Provide Multiple Page Sizes. This allows processes, that require

larger page sizes, to use them without an increase in fragmentation.

Other Considerations to avoid Thrashing

Dr. Tarek Helmy, KFUPM-ICS
49

• Page size selection

– There is no a decision regarding the best page size, there is a set of
factors that support various sizes.

– Table size

• Decreases the page size, increases the number of pages and hence
increases the size of the page table.

– Fragmentation

• Memory is better utilized with smaller pages

– I/O overhead

• I/O time is composed of seek, latency, and transfer times where
transfer time is proportional of page size.

– Locality

• With small page size, locality will be improved, a small page size
allows each page to match program locality more accurately.

– A Locality is a set of pages that are actively used together

– As a process executes, it moves from locality to locality

» Example: Entering a subroutine defines a new locality

– Programs generally consist of several localities, some of which
overlap

Page Size: Trade-off

Dr. Tarek Helmy, KFUPM-ICS
50

• Program structure

– The system performance can be improved if the user/compiler/OS has an

awareness of the underlying demand paging.

– Assume that pages are 128 words in size. Consider a program whose

function is to initialize to 0 each element of 128 by 128 array.

– int A[][] = new int[128][128];

– Program 1: for (int j = 0; j < A.length; j++)

 for (int i = 0; i < A.length; i++)

 A[i][j] = 0;

Notice that the array is stored row major A[0][0], A[0][1], A[0][2], A[0][3],

A[0][127], ……… A[127][0], A[127][1], … A[127][127].

– If the OS allocates less than 128 frames to the entire program, then it

causes 128 x 128=16384 page faults.

– Changing the code to Program 2: for (int i = 0; i < A.length; i++)

 for (int j = 0; j < A.length; j++)

 A[i][j] = 0;

– Zeros all the words on one page before starting the next page reducing

the number of page faults to 128.

Other Considerations to avoid Thrashing

Dr. Tarek Helmy, KFUPM-ICS
51

– The compiler and loader can have a significant effect on

paging. Separating code and data generating a reentrant

code. This means pages can be read only and hence will

never be modified. Non modified pages need not to be

paged out to be replaced.

– The chose of the programming language can affect paging

as well. C and C++ use pointers frequently and pointers

tend to randomize access to memory, thereby potentially

diminishing a process locality.

– OOPs also tend to have a poor locality of references.

– I/O Interlock: Pages must sometimes be locked into

memory if they used as buffers for I/O operations.

– Consider I/O: Pages that are used for file-mapping

must be locked from being selected for eviction by a

page replacement algorithm.

Other Considerations to avoid Thrashing

Dr. Tarek Helmy, KFUPM-ICS
52

OS Examples: Unix Paging Policy

• Demand paging

• Page replacement algorithm

– Maintain a certain number of free frames (within a

min/max range)

– Swaps out processes when number of free pages is

below min.

– Unix uses 2-handed clock for page replacement

policy.

Dr. Tarek Helmy, KFUPM-ICS
53

OS Examples: Linux Paging Policy

• Demand paging

• Maintain a certain range of free frames

• Each process on a 32-bit machine is given 3 GB of

virtual address space and 1 GB reserved for page tables

and other kernel data.

• 3-level page table

• Kernel is never paged out.

Dr. Tarek Helmy, KFUPM-ICS
54

OS Examples: Windows NT Paging Policy

• Demand paging

• Maintain a certain number of free frames

• For 32-bit machine, each process has 4 GB of virtual address space

• Uses working sets (per process)

– Consists of pages mapped into memory and can be accessed

without page fault

– Has min/max size range that changes over time

• If page fault occurs and working set < min, add page

• If page fault occurs and working set > max, evict page from

working set and add new page

• If too many page faults, then increase size of working set

• When evicting pages,

– Evict from large processes that have been idle for a long time

before small active processes.

– Consider foreground process last

Dr. Tarek Helmy, KFUPM-ICS
55

OS Examples: Windows

• Uses demand paging with clustering. Clustering brings in pages

surrounding the faulting page.

• Processes are assigned working set minimum and working set

maximum.

• Working set minimum is the minimum number of pages the process is

guaranteed to have in memory.

• A process may be assigned as many pages up to its working set

maximum.

• When the amount of free memory in the system falls below a threshold,

automatic working set trimming is performed to restore the amount of

free memory.

• Working set trimming removes pages from processes that have pages

in excess of their working set minimum.

Dr. Tarek Helmy, KFUPM-ICS
56

OS Examples: Solaris 2

• Maintains a list of free frames to assign faulting

processes.

• Lots-free – threshold parameter to begin paging.

• Paging is performed by page-out process.

• Page-out scans pages using modified clock algorithm.

• Scan-rate is the rate at which pages are scanned. This

ranged from slow-scan to fast-scan.

• Page-out is called more frequently depending upon the

amount of free memory available.

Dr. Tarek Helmy, KFUPM-ICS
57

The End!!

Thank you

Any Questions?

