BSOS a0

Operating Systems ICS 431

FoLr L@@

Ch. 7: Deadlock

Dr. Tarek Helmy El-Basuny

Dr. Tarek Helmy, ICS-KFUPM

Baagaa30%

FFdfLo LD

BSOS a0

Reminder: Ch. 6 Process Synchronization

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM 2 BSaaamh

To practice collaborative learning as we agreed, to foster self learning skill, and to help us
progress in the course.

You need to study Ch. 6 “Process Synchronization” by yourself and it will be included in the
Major Exam II.

Office hours can be used to answer any inquires about this chapter.
Your objectives out of reading this chapter is to know:

Evaluating synchronization algorithms of handling a critical section where every algorithm
should allow Mutual Exclusion, Progress and bounded waiting.

Why synchronization? Or the necessity of synchronization by the OS.

How do processes work with resources that must be shared between them?
What is a critical section?

Dangers of handling the critical section without synchronization.

How to ensure that only one process can get access to the critical section?
What is atomic operation? It executes without interruptions, all or none.
Different algorithms to synchronize processes entering into the critical section.
Synchronization tools.

Semaphores, and types of Semaphores.

Incorrect usages of Semaphores.

Monitors.

Classical problems of synchronization.

Synchronization methods in different OSs.

FFdfLo LD

Ch. 7 Deadlocks

BSOS a0

— Computer's System Resources

— Deadlock, Live lock/Busy waiting, Starvation definitions,

FoLr L@@

— Deadlock examples in computer systems and real life,

— Computer System Model (Processes, Recourses, Requests)

— Fundamental causes of Deadlock

— Resource Allocation Graph to visualize the computer system.
« Methods for Handling Deadlocks

— Deadlock Prevention

— Deadlock Avoidance

— Deadlock Detection

— Deadlock Recovery

* Integrated approaches to handle Deadlock in current OSs.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 3 Baaaaun

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM 4 BSaaamh

9
A Computer’s System Resources

 Reusable resources

» A reusable resource is the one that can be safely used by the process at a
time and then reused by another process at different time.

= The process requests the resource, acquires it, and then releases it.

o Examples: Processors, I/O channels, main and auxiliary memory blocks,
I/O devices, files (i.e. data bases), semaphores, etc...

« Consumable resources

It can not be reused by another process.
= The number of consumable resources is usually unlimited.
o Examples: Interrupts, Signals, Messages, Information in I/O buffers, etc.
* Preemptable resources.
» Can be taken away from a process with no ill effects (e.g. Memory, CPU,.).
« Nonpreemptable resources
» Will cause the process to falil if it is taken away (e.g. CD, ...)

« Deadlock is the permanent blocking of a set of processes that either compete
for system resources or communicate with each other.

» A consumable resource is the one that will be created, used and destroyed.

FFdfLo LD

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM

R p—— The Deadlock Problem

» A set of blocked processes each holding a resource and waiting to acquire a resource
held by another process in the set. “P1 is waiting for P2”

 Example 1
— System has a Printer and a Disk.
— P, and P, each holds one resource and needs another one.
— P1 and P2 cannot progress, will wait for each other.

« Starvation vs. deadlock vs. Livelock “P2 is waiting for P1”
— Deadlock: circular waiting (without progressing) of processes for resources.
— Live lock/Busy waiting: processes run but make no progress, i.e. looping

— A real-world example of livelock occurs when two people meet in a narrow corridor,
and each tries to be polite by moving aside to let the other pass, but they end up
swaying from side to side without making any progress because they both
repeatedly move the same way at the same time.

— Starvation: a process/thread is temporary waiting to gain regular access to shared
resources and is unable to make progress now but will latter progress.

— Both deadlock and livelock lead to starvation, but not the other way

Process 1 Process 2 >-;

Baagaa30%

FFdfLo LD

e p—— Deadlock Types

« People sometimes classify deadlock into the following types:

« Resources deadlocks: when processes are waiting for each other
due to limited number of resources.

« A process needs multiple resources for an activity.

« Deadlock occurs if each process in a set requests a resource
held by another process in the same set, and it must receive
the requested resource to move further.

FoLr L@@

« Communication deadlocks: when processes are waiting for each
other due to lost of communicating messages.

« Processes wait to communicate with other processes in a set.

« Each process in the set is waiting on another process’s
message, and no process in the set initiates a message until
It receives a message for which it is waiting.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 6 Baaaaun

Example of Resources Deadlock: Due to shortage of memory

BRGS0 %m
|
W . 200K bytes of memory space is available for allocation, and the following
: sequence of events occur.
4 P1 P2
o L .
1 Requests 80 Kbytes; Requests 70 Kbytes;
Rédﬁests 60 Kbytes; Requests 80 Kbytes;

« Deadlock occurs if both processes progress to their second request. Why?

- Y

Fig. 6.2 A simple deadlock. This systemn is deadlocked becauvse each process holds
arasource being reguastad by the othar process and naitheaer process iswilling to release
the rasourcea it halds.

{pgp alad) pyandid

Resource 1 is
alloccated to

Drn:asr

Process
r-Y

Pracess B is
requesting

ﬁmu =1=2

Process

P by gy oo Sty Mrinotinen s ek o s

requesting
resource 2.

Resource
1
-3
Pracass ﬂ& .@)F‘gg;ﬁu e 2 s
2

allocated to
process B.

Dr. Tarek Helmy, ICS-KFUPM 7 Baaaaah

FFdfLo LD

BSOS a0

Example of Communication Deadlock: Due to lost of messages

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM 8 BSaaamh

Suppose a server process and a client process run on two different machines.

The server first sends an initialization message to the client “i.e. | am ready”, and
then waits for a request from the client.

The client first waits for the initialization message, and then makes requests.
What happen if the initialization message is lost?

l.e. If the server is so fast so that the server’s initialization message arrives at the
client while it is still in its booting up stage, then the initialization message will be
lost.

Thus, the client is waiting for the initialization message, whereas the server is
waiting for a request message from the client.

A deadlock now occurs.

If the server and client machines are of the same speed, and started
simultaneously, then the system runs smoothly without deadlock. Also, if both of
the server or the client periodically initiates messages then the system runs
smoothly as well. Network

MSG
Acknowledge
MSG

Acknowledge
MSG
Acknowledge

(Lost)

FFdfLo LD

Example: Deadlocks in Databases Access

FoLr L@@

« Deadlock can occur if 2 processes
access & lock records or Tables or
even the whole database.

3 different levels of locking :

— The entire database for duration of
request.

>

el L | — A subsection of the database i.e.
a Table.

— Individual record until the process
Table2 |€~

IS completed.

 |If don’t use locks, can lead to a race
condition.

« This particular type of deadlock is
easily prevented by using an all-or-
none resource allocation algorithm.

Dr. Tarek Helmy, ICS-KFUPM O MG aaamm

FFdfLo LD

BSOS a0

Example: Deadlocks on File Requests

FoLr L@@

Hequeﬂed A

.

bllocated

F1

Fe

Dr. Tarek Helmy, ICS-KFUPM

Bllocated

E
E
-
-
'{':

Requested

If processes can request and
hold files for duration of their

execution, deadlock can occur.

If only two files and two
processes, this may lead to
starvation !!

But, if other processes that
require F1 or F2 are put on
hold as long as this situation
continues, this will lead to
deadlock !

Deadlock remains until a
process is withdrawn or
powerfully removed and its file
IS released.

10 Baaaaah

FFdfLo LD

Deadlocks in Disk Sharing

LR R RS

L]

a

ol

o |

| (Y Rt o | [o

: _ _ Channel cont.rol
@ Write to file at unit

cylinder 310

Dr. Tarek Helmy, ICS-KFUPM

access different areas of same disk.

ST

could send conflicting commands and deadlock the system.

Baagaa30%

« Disks are designed to be shared, so it is common for processes to

« Without controls to regulate use of disk drive, competing processes

FFdfLo LD

Real Deadlock in the daily life

BSOS a0

FoLr L@@

—————————— — ———————— ——

(a) Potential deadlock (b) Actual deadlock.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 12 BSaaamh

Bridge Crossing Deadlock Example

BSOS a0

FoLr L@@

« Traffic only in one direction.
« Each section of a bridge can be viewed as a resource.

» |f a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback).

« Several cars may have to be backed up if a deadlock occurs.

Starvation is possible.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 13 BSaaamh

Deadlock Causes

BSOS a0

Fundamental causes of deadlocks: Four necessary and sufficient conditions for a
deadlock to occur. All of these conditions must be present for a deadlock to occur.

. If one of these conditions is absent, no deadlock is possible.

1. Mutual exclusion condition:

FoLr L@@

= Each resource is either currently assigned to exactly one process or a resource
that cannot be used by more than one process at a time.

2. Hold and wait condition:

= Processes currently holding resources granted earlier can request new resources

or processes already holding resources may request new resources.
3. No preemption condition:

= Resources previously granted cannot be taken away from a process. They must be

explicitly released by the process holding them.
4. Circular wait condition:

= There exists a set {P,, P, ..., P,} of waiting processes such that P, is waiting for a

resource held by P,, P, is waiting for a resource held by P,, ..., P,_; is waiting for a

resource that is held by P,, and P, is waiting for a resource held by P,,.

Dr. Tarek Helmy, ICS-KFUPM 14 B agaaun

FFdfLo LD

Computer System Model

BSOS a0

* Any computer system consists of:
— Processes running in the system, i.e. P, P,, . . ., P,

— Resource available (HW or SW), i.e. R, R,, . . ., R,

FoLr L@@

« CPU cycles, memory spaces, I/O devices, signals, messages,
« Each resource type R, may have W, instances.
— The blocks of the main memory or the disk can be given to more than processes.
« Each process utilizes aresource as follows:

— Requests it, if the request can not be granted immediately, then the process must

walit.
— Uses it, the process can operate on the resource.

— Releases it, the process releases the resource either voluntarily or preempted.

P1 — » @ Ra pl - — ® Ra

(a) Hesouwce is requested (b)) Resource is hield

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 15 BSaaamh

BSOS a0

Resource-Allocation Graph (RAG)

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM 16 BSaaamh

A graphical way to visualize the computer system to determine if a deadlock
may occur or no.

« Basic components of any RAG are set of vertices V and a set of edges E.
Vs partitioned into two types:
- P={P,P,, ..., P}, the set consisting of all the processes in the system.

- R={R,, R,, ..., R}, the set consisting of all resource types in the
system.

 E can be either:
— Request edge — directed edge P; —» R;
— Assignment edge — directed edge R; — P;

 An arrow from the process to resource indicates the process is requesting
the resource.

. An arrow from a resource to a process means an instance of the resource
has been allocated/assigned to the process.

FFdfLo LD

. Resource Allocation Graph

« Inthe RAG, the process Is represented by a circle, and
the resource is represented by a square.

° A PrOCeSS _______________________________________

FoLr L@@

« AResourcetypewith4instances_ . _ . _._._ . _._ . _ . _. _. _. _. .

- P;requests instance of R;

 Dots represent number of instances of a resource type.

A request edge points to the resource, and an
assignment edge comes from the resource instances
(dots) to the process.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 17 B agaaun

Resource Allocation Graph: Example
RS aaaah

: R3 Assigned to P3
Resource allocation graph: J

= P={P1, P2, P3} R, R,
= R={R1, R2, R3, R4} o °
= E={P1-R1, P2 - R3 R1-» P2 R2 -
P2, R2 — P1, R3 — P3} ‘
Recourse instances:
= One instance of resource type R1 e e
/

FoLr L@@

= Two instances of resource type R2

= One instance of resource type R3 P2 Requests R3

» Three instances of resource type R4 \: o
o
R, .

« The above RAG can be interpreted as followings:
— P1is holding an instance of R2 and is waiting for an instance of R1.

— P2 is holding an instance of R1, an instance of R2 and is waiting for an
instance of R3.

— P3is holding an instance of R3.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 18 BSaaamh

Basic Facts of a RAG

L R RSN
|
: 1. If the RAG contains no cycles, then no process is deadlocked.
4 2. If the RAG contains a cycle, then:
: . If the resource types have multiple instances, then deadlock MAY
. exist.
. If each resource type has one instance or the number of

assignment and requesting is more than the number of
instances, then deadlock has occurred.

- 2, s
R1 - L _J
- |
® —
P
P =) (B0 > (S
‘\/
o = > a
\- [=] ‘
-___| = = d
B = !
RAG Example 1 RAG Example 2 o
|
Dr. Tarek Helmy, ICS-KFUPM 19 B agaaanhk

Resource Allocation Graph Examples

Dr. Tarek Helmy, ICS-KFUPM

L R RSN

|

: RAG with a deadlock: Two cycles: RAG with a cycle but no deadlock:
-

a| + Cyclel: P1-R1- P2 -R3— * Cycle: P1-R1— P3 -R2-P1
J P3—-R2—P1 * P4 may release its instance of
|

« Cycle 2: P2—R3— P3 »R2—P2 R2 that can be allocated to P3

breaking the cycle.

20 BOagadam%m

FFdfLo LD

How to Handle Deadlock

BSOS a0

There are three strategies:

1.Ignores the deadlock handling. If it occurs, resolved by explicit user
intervention. It is used by some operating systems, i.e. traditional UNIX.

FoLr L@@

2. Ensures deadlock never occurs using either:

— Prevention strategies: Preventing the main causes/conditions of deadlock
so that deadlock is impossible. If we can not prevent the causes then try,

— Avoidance strategies: Avoiding at least one of the four conditions. Do not
allow the system to get into a deadlocked state by disallowing dangerous
allocations that may cause deadlock to happen.

3. If we can not prevent its causes or avoid its occurrence. This requires using:

— Detection strategies: To know that deadlock has occurred, and which
processes are in deadlock.

— Recovery strategies: Abort a process or preempt some resources (using
some polices) when deadlock is detected, to recover it.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 21 BSaaamh

Deadlock Prevention
BSOS a0

Do not allow one of the four conditions to occur.
1. Preventing Mutual exclusion:
= Example: Allow the printer to be concurrently shared?
» What are the consequences?

FoLr L@@

= Conclusion:

= Prevention not possible, since some resources are naturally
non-sharable.

= Automatically holds for printers, CD-RW and other non-
sharable devices.

= Solutions:

= Make resources concurrently sharable wherever possible e.g.
read-only file access (don't need mutual exclusion and aren’t
easily to deadlock).

= Better to have a spooler process to which print jobs are sent
(completed output file must be printed first).

Dr. Tarek Helmy, ICS-KFUPM 22 Waaaamm

FFdfLo LD

[a
'
4
4
4
4
d
d

Dr. Tarek Helmy, ICS-KFUPM 23 WMo aaaum

Deadlock Prevention

BSOS a0

2. Preventing Hold and wait:

O Process should request all the resources it will ever need at once.

= Require process to request and be allocated all its resources
before it begins execution, or allow process to request resources
only when the process has none.

= Must guarantee that whenever a process requests a resource, it
does not hold any other resources.

d Conclusion:
= |nefficient - not all resources needed all the time

= Processes probably will not know in advance what resources they
will need or may have to wait excessive time to get all resources at
once.

= Utilization is low: many resources may be allocated but unused for
long time.

= Starvation possible: the process requests popular resource may
wait indefinitely as it might be allocated to another process.

FFdfLo LD

FoLr L@@

Deadlock Prevention

BSOS a0

3. Preventing No Preemption (means support preemption):

— If a process that is holding some resources requests another resource that
cannot be immediately allocated to it, then all resources currently being held
are released.

— Need to save state of resource if a process is forced to release it
O Not practical for some resources, i.e..
« Cannot take a printer away from a process in the middle of printing

« Cannot take a semaphore away from a process randomly (might be in the
middle of updating a shared area)

« Cannot take open streams, pipes and sockets away
— process would need to be written very carefully, probably using signals
— very undesirable if possible at all

O Occasionally possible:

— Processes resident in main memory (one or more processes can be
swapped out to VM to release their pages and allow remaining processes
to continue)

Dr. Tarek Helmy, ICS-KFUPM 24 Waaaamm

FFdfLo LD

Deadlock Prevention

BSOS a0

4. Preventing Circular Wait:

O Impose order of all resource types and require that each process
requests resources in an increasing order of enumeration.

U Supply information about how resources are to be used at process
startup. i.e.

= Use CD and disk, then release both
= Use and release CD, then use disk

= Prioritize processes and assign resources in the order of
priorities, i.e. hard drive has higher order than printer.

FoLr L@@

O Impractical due to:

= |t will depend on programmer to follow the order (one program
may not follow the order and causes deadlock system)

= Adding a new resource that upsets ordering requires all code
ever written for system to be modified!

= Resource numbering affects the efficiency of utilization.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 25 WO aaaum

Deadlock Avoidance

BSOS a0

— Since we can’t prevent the causes of deadlock,

— Is it possible to avoid its occurrence? Through careful allocation of
resources to processes to avoid entering the system into unsafe state.

 If we have prior knowledge of how resources will be requested, then will
be possible to determine what will be the state of the system? if the OS
allows each process to get the requested resources,

FoLr L@@

 Possible states are:
1. Deadlock: Processes will be waiting each other without progress.
2. Unsafe state: If some requests are allocated deadlock may occur.

3. Safe state: there are enough resources such that all processes will be
able to finish without waiting for each other.

« As we will conclude “avoidance may be inefficient”:

- Must know resources requirements of all processes in advance.
- Resource request per each process has to be known and fixed.
- Complex analysis for every request.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 2060 WO aaauTm

Safe, Unsafe , Deadlock State

BSOS a0

« |f a system is in safe state = then the deadlock never occurs.

« |f a system is in unsafe state = then there is possibility of a deadlock
to occur.

« Avoidance = means ensure that a system will never enter into an
unsafe state.

FoLr L@@

Only with luck yvill unsafe
processes avoid
deadlock. deadlock
safe

OS avoids deadlock

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 27 Waaaamm

BSOS a0

Deadlock Avoidance

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM

« Simplest and most useful model, it requires that each process
declares in advance the maximum number of each resource type it
may need.

 The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that a circular-wait condition will
never be there.

« Resource-allocation state is defined by the number of available and
allocated resources, and the maximum needs of the processes.

« System makes a decision based on
— The resources currently available
— The resources currently allocated
— Future requests for resources

Baagaa30%

FFdfLo LD

Safe State

BSOS a0

 When a process requests an available resource, the OS must decide
If the immediate allocation leaves the system in a safe state or no.

FoLr L@@

« System is in safe state if there exist a safe sequence of all processes.

* Sequence <P, P,, ..., P> is safe if for each P;, the resources that P,
requests can be satisfied by currently available resources +
resources held by all the P;, with j<i.

— If P, resource needs are not immediately available, then P, can
wait until all P, have finished, j<i.

— When P; is finished, P; can obtain needed resources, execute,
return allocated resources, and terminate.

— When P, terminates, P,,, can obtain its needed resources, and so
on.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 29 BSaaamh

Example

BSOS a0

« System with 12 memory blocks available and three processes:
— PO: currently has 5, maximum needs of 10, future needs 5.
— P1: currently has 2, maximum needs of 4, future needs 2.
— P2: currently has 2, maximum needs of 9, future needs 7.

FoLr L@@

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 30 B agaaam

BSOS a0%n B@mme

« System with 12 disks and three processes:
— PO: currently has 5, maximum need of 10, needs 5.
— P1: currently has 2, maximum need of 4, needs 2.
— P2: currently has 2, maximum need of 9, needs 7.
— State is currently safe

« 3 disks are available, 2 can be given to P1, when it
terminates there will be 5 drives available, PO can use them
and terminates, this makes 10 drives available, P2 can get 7
of them and finish. Safe sequence is (P1, PO, P2).

— However, if P2 were allocatedl additional disk, the state would
become unsafe.

FoLr L@@

« Because all of the 3 processes could not obtain their needed
disks to complete.

— However, if P2 were to request 1 additional disk, the state would
become safe.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 31 Ba g aaun

BSOS a0

Resource-Allocation Graph Algorithm

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM 32 B agaaun

Add to the RAG an extra link called a claim edge.

Claim edge P; ---> R, indicated that process P; may request resource

R;in future.
Claim edges represented by dashed line arrows ----».

Claim edge converts to a request edge when a process requests a

resource.

When a resource is released by a process, assignment edge

reconverts to a claim edge.
Resources must be claimed a priori in the system.

If no cycle comes into existence, then the state is still safe

A cycle means an unsafe state (although not necessarily deadlock)

FFdfLo LD

RAG For Deadlock Avoidance

BRGS0 n
L]
4 R, R,
J 0 0
o |
o |
- (5D (2 (P2
‘ ‘s - ~“s
‘S‘ "' ‘ﬁ-‘
E™Y ’ Fis .
RS
R

Unsafe State in Resource-Allocation Graph
Fig. 1
Fig. 2

1. Suppose that P2 requests R2, Fig. 1. Although R2 is free, we can
not allocate it to P2 since this will create a cycle and indicates of
unsafe state, Fig. 2.

2. If P1requests R2 and P2 requests R1, then a deadlock will occur.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 33 BSaaamh

RAG For Deadlock Avoidance: Multiple Instances

UL LR
L]
4 R R,
o |
o |
o |
IR) @ (P2)
o N P

e 0 P P

=5 Fz

Safe State In Resource-Allocation Graph

Fig. 1
J Fig. 2
1. Suppose that P2 requests R2, Fig. 1. because R2 has two
Instances, we can allocate them to P1 and P2 even there will be a
cycle and indicates of safe state, Fig. 2.

2. That means the RAG is not applicable in case of having
recourses with many instances.

3. There should be another algorithm fro that situation.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 34 B agaaun

Deadlocks

BSOS a0

» We have presented last class:

Computer’'s System Resources: Consumable resources, reusable resources,
preemptable, non- preemptable. Here we will treat everything (interrupts, signals,
messages, information in 1/O buffers, 1/0 devices) as resources.

« Deadlock, Live lock/Busy waiting, Starvation Definitions,

» Types of Deadlock: Communication deadlocks, Resources deadlocks, what does it
mean?

 Deadlock Examples: due to limited recourses, due to lost of communicating messages,
due to sharing of resources, due to mutual exclusion.

» Deadlock causes: Mutual exclusion, no-preemption, hold and wait, circular wait.
« Computer system modeling,
» Constructing the RAG, facts in a RAG.
* Methods for Handling Deadlocks
— Deadlock Prevention: can we prevent the deadlock? If yes how and if no why?
« We are going to present:

FoLr L@@
[]

— Deadlock Avoidance: can we avoid the deadlock? If yes, How? if no why?
— Deadlock Detection: can we detect the deadlock? If yes, How?
— Recovery from Deadlock

Integrated Approaches to Deadlock Handling.

Dr. Tarek Helmy, ICS-KFUPM 35 maaaauwm

FFdfLo LD

BSOS a0

Banker (Dijkstra’s) Algorithm

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM 36 BSaaamh

The Resource Allocation Graph algorithm is not applicable to avoid the
deadlock in systems with multiple instances of each resource type.

The banker algorithm is applicable to multiple resource instances.

This algorithm could be used in the banking system to ensure that the bank
never allocates its available cash such that it can no longer satisfy the needs
of all its customers.

Each process must declare the maximum number of each resource type it
may need in future.

This number should not exceed the total number of available resources

In the system.

When a process requests a resource, the system must check whether the
allocation of these resources will leave the system in a safe state.

If it will leave the system in a safe state:
— Then, resources will be allocated,

— Otherwise, the process must wait until other processes release enough
resources.

When a process gets all its resources it must return them in a finite amount of
time.

FFdfLo LD

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM

Deadlock avoidance

BSOS a0

« Examine each resource request and determine whether or not granting the
request can lead to deadlock.

 Define a set of vectors and matrices that characterize the current state of all
resources and processes.

» Resource allocation state matrix
Alloc;; = the number of units of resource j held by process |

» Maximum claim matrix p1
Max; = the maximum number of units of p
resource | that the process i will ever require 2
simultaneously.]?3

> Available vector P
Avai; = the number of units of resource] that
are available.

FFdfLo LD

p—— Data Structures for the Banker Algorithm

Let n = number of processes, and m = number of resources types.

« Allocation: An n x m matrix. Allocation[i, j] = k, means P; is currently
allocated k instances of R;

FoLr L@@

« Max: An n x m matrix. Max [i, J]] = k, means process P, may request at
most k instances of resource type R;.

* Need: An n x m matrix. Need][i, j] = k, means P, may need k more
instances of R;to complete its task.

Need [i, j] = Max]i, j] — Allocation [i, j].
« For simplification, let X and Y be vectors of length n, we say that X <
Y iff X[i]<Y]i] for all i=1,2,.., n.

- If X=[0,3,2,1] and Y=[1,7,3,2], then X<Y.

« Available: Vector of length m. Available [] = k, means there are k
Instances of resource type R;available.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 38 BSaaamh

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM 39 BSaaamh

Safety Algorithm

BSOS a0

This algorithm for finding out whether or not the system is in safe state

1. LetWork and Finish be vectors of length m and n, respectively.
Initialize:
Work = Available
Finish [i] = false if there is a process i (i=1, 2, ..., n) not yet finish.
2. Find a process i such that both:
(a) Finish [i] = false (not yet finish)
(b) Need, < Work (needs less recourses than the available)
If no such i exists, go to step 4. (all processes have finished)

3. Work :=Work + Allocation; (update the work and available)
Finish[i] = true
go to step 2.

4. If Finish [i] = true for all i, then the system is in a safe state.
The algorithm may require an order of m*n2 operation to decide.

FFdfLo LD

FoLr L@@

Resource-Request Algorithm for Process Pi

BSOS a0

Request; = request vector for process P;. If Request,[j] = k then
process P; wants k instances of resource type R;

1. If Request; < Need, go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim.

2. If Request, < Available, then go to step 3 otherwise P, must walit,
since resources are not available.

3. Pretend to allocate requested resources to P; by modifying the
state as follows:

Avalilable := Available - Request;
Allocation, := Allocation; + Request;
Need; := Need; — Request;

* If safe = the resources are allocated to P;.

* If unsafe = P, must wait, and the old resource-allocation state
IS restored.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 40 BSaaamh

BSOS a0

Example of Banker’s Algorithm

FoLr L@@

[EEN

U U U T
W N

N

ABC ABC ABC
010 753 332

200 322
302 902
211 2272
002 433

The system is in a safe state since the sequence
<P, Ps, P, P,, P> satisfies safety criteria.

Dr. Tarek Helmy, ICS-KFUPM

« Consider a system of 5 processes and 3 resources:
* 5 processes P,through P,;

* Resource types: A (10 instances), B (5 instances, and C (7
Instances).

* Snapshot at time T,
Allocation Max Available

Need
ABC

P, 743

P, 122

P, 600

P, 011

P, 431
The content of the

matrix need is defined to
be Max — Allocation.

FFdfLo LD

41 BOagadam%m

Example P1 Allocated (1, 0, 2)

L R RSN
h
W « Suppose that P1 allocated 1 additional instances of type A, 2 instances of
: type C. To decide whether this request can be granted, we:
3/ * Check that Need< Available (that is, (0,2,0) < (2,3,0) = true. This request
o can be allocated and we arrive at the new state:
. Allocation Max Available
Need
ABC ABC ABC
ABC
P, 010 753 230
P, 743
= 302 322 5 020
P, 302 902 !
P, 211 222 i 00
P, 002 433 Ps oLl
P, 431

- Executing safety algorithm shows that sequence <P,, P;, P,, Py, P,>
satisfies safety requirement.

« Can request for (3,3,0) by P, be granted?
« Can request for (0,2,0) by P,be granted?

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 42 B agaaun

Deadlock Avoidance is not Practical

BSOS a0

» ltis very difficult or even impossible for some kind of processes to declare

the maximum # of resources it requires in advance.

FoLr L@@

— Many processes are interactive and/or dynamic where the users or the

system cannot anticipate their eventual requirements.
— Moreover, its point in time is also unknown.
* Resources may disappear or newly plug in
— Some devices leave the available pool while others may plug in.
 New processes may appear or old processes may be killed.
— The system is dynamic and processes are born and die at any moment

« The algorithm requires that processes release the resources within a finite

time, but this may cause lengthy delay to other processes waiting in line.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 43 BSaaamh

Deadlock Detection
BSOS a0

If a system does not employ either a deadlock
prevention or a deadlock avoidance, then a deadlock
may occur, and this requires:

FoLr L@@
[]

A detection algorithm to examine the state of the
system and determines whether a deadlock has
occurred or not. If occurred, which processes are in
the deadlock?

« Arecovery policy to recover from the deadlock.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 44 B agaaun

epp——— Wait-For Graph: Deadlock Detection Algorithm

« |f all resources have a single instance, then Wait-For Graph (WFG) or it

may be named (Process Dependency Graph) will be used.

FoLr L@@

1- Create a WFG (Process Dependency Graph (PDG)
— Ina WFG/PDG, only nodes and edges are there where:
* Nodes represent processes, and
* An edge from P; — P;means P; is waiting for P;.
2- Periodically check for a cycle in the WFG/PDG.

3-If there is a cycle, then processes in the cycle are deadlocked.

— An algorithm to detect a cycle in a graph requires an order of n?

operations, where n is the number of vertices (processes) in the

graph.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 45 BSaaamh

ABTauE. Resource-Allocation Graph — Wait-for Graph

How to create a WFG/PDG out of the RAG?

« Remove the nodes of type resources from the RAG.

* If the corresponding RAG contains a request edge P; —R, and an
assignment edge from R, —P; for the same resource R,,.

 Remove the request and assignment edges.
« Create an edge from P; —»P;in the WFG
« An edge from P(i) to P(j) implies that P(i) is waiting for P(j) to release a
resource that P(i) needs.

FoLr L@@

(=) (b)

Resource-Allocation Graph Corresponding WFG/PDG

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 46 BSaaamh

BSOS a0

Resource-Allocation Graph — Wait-for Graph

FoLr L@@

P(i) needs.

How to create a WFG/PDG out of the RAG?
« Remove the nodes of type resources from the RAG.

 If the corresponding RAG contains a request edge P; -»R, and an assignment edge
from R, —P; for the same resource R,

 Remove the request and assignment edges.
« Create an edge from P; —»P;in the WFG
* An edge from P(i) to P(j) implies that P(i) is waiting for P(j) to release a resource that

bw@,&

Rl

R0

?
.
b

q
ot
O

/

P3

Pa

Pl P

P4

Dr. Tarek Helmy, ICS-KFUPM

Resource-Allocation Graph

Corresponding WFG/PDG

FFdfLo LD

47 BOagadam%m

FoLr L@@

EXxercises: try to solve

BSOS a0
. Suppose there is only one instance of each resource
. Example 1: Is there a deadlock?

1. P1 has R2 and R3, and is requesting R1
2. P2 has R4 and is requesting R3
3. P3 has R1 and is requesting R4

. Example 2: Is there a deadlock?
1. P1 has R2, and is requesting R1 and R3
2. P2 has R4 and is requesting R3
3. P3 has R1 and is requesting R4

. Use a wait-for graph/Process Dependency Graph:

Dr. Tarek Helmy, ICS-KFUPM 48

Baagaa30%

FFdfLo LD

With Multiple Instances of Resources
RS aaaah

« The WFG algorithm is not applicable to systems with multiple instances of each
resource type.

« Another algorithm is applicable to such kind of systems, where the following data
structures will be created.:

« Allocation: An n x m matrix defines the number of resources of each type currently
allocated to each process.

 Request: An n x m matrix indicates the current request of each process. If Request
[i,]] = k, then process P; is requesting k more instances of resource type R;.

« Available: A vector of length m indicates the number of available instances of each
resources type.

FoLr L@@

Resource = (R, Ry, ..., R,)

N

Mll M12 'R Mlm
Ap Ay A M,, M M
_ 21 Wl - Vipp,
Allocation = A = Ag1 Agy - Agm Request =
Anl An2 Anm anl |\/|n2 I\/InrrL

Available = Total - Allocation

Available=V = (V;, V,, ..., V)

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 49 BSaaamh

BSOS a0

Detection Algorithm

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM 50 B agaaam

1.

Let Work and Finish be vectors of length m and n, respectively

Initialize:

Work := Available. Fori=1,2, ..., n, if Allocation; # 0, then Finish([i]
= false; otherwise, Finish[i] = true.

Find a process i such that both:

(a) Finish[i] = false

(b) Request;, < Available

If no such i exists, go to step 4.

Work = Work + Allocation,

Finish[i] = true, go to step 2.

If Finish[i]= false, for some i, 1 < i< n, then the system s in
deadlock state. Moreover, if Finish[i]= false, then P, is
deadlocked.

Algorithm requires an order of O(m x n2 operations to detect whether

the system is in deadlocked state.

FFdfLo LD

Example of Detection Algorithm

BSOS a0

» 5 processes, P, through P,; three resource types A (7 instances), B (2
Instances), and C (6 instances).

« Snapshot at time T, we have this resource allocation state:
Allocation Request Available
ABC ABC ABC

FoLr L@@

P, 010 000 000
P, 200 202
P, 303 000
P, 211 100
P, 002 002

« Sequence <P, P,, P, P;, P,> will result in Finish[i] = true for all 1.

Dr. Tarek Helmy, ICS-KFUPM 51 B agaaun

FFdfLo LD

Example of Detection Algorithm

:llJJJll
: « Suppose now P, requests an additional instance of type C.
4 Allocation Request Available
3 ABC ABC 000
" P, 010 000
P, 200 201
P, 303 001
P, 211 100
P, 002 002

« State of system?
— We claim that the system is now deadlocked.

— Can reclaim resources held by process P,, but insufficient resources to
fulfill other processes requests.

— Deadlock exists, consisting of processes P,, P,, P5;, and P,.

Dr. Tarek Helmy, ICS-KFUPM 52 Ba g aaun

FFdfLo LD

BSOS a0

Detection-Algorithm Usage

FoLr L@@

 When, and how often, to invoke the detection algorithm depends on:
— How often a deadlock is likely to occur?
— How many processes will be affected by the deadlock when it happens?

« If detection algorithm is invoked randomly, there may be many cycles in the

WFG and so we would not be able to tell which of the many deadlocked

processes “caused’ the deadlock.

Dr. Tarek Helmy, ICS-KFUPM

* Inthe extreme, we could invoke the detection algorithm every time a request

for allocation cannot be granted. But this makes an overhead computing.

* The detection algorithm can be invoked whenever the CPU utilization drops

below 40 % or once per hour.

Baagaa30%

FFdfLo LD

Recovery from Deadlock: By Process Termination
RS aaaah

« If deadlock has been detected by the OS, the OS should be able to recover it.

« Terminate all deadlocked processes. It is too expensive as these processes
may have computed for a long time and later will be repeated, if the process
was in the middle of updating or printing a file, terminating it makes an errors.

FoLr L@@

« Abort one process at a time until the deadlock cycle is eliminated. This means
the detection algorithm should be invoked many times to check and this
makes overhead computing.

« Partial termination means there should be a mechanism to select the process
to be terminated, like the CPU scheduling.

 |n which order should we choose to abort?

— Periority of the process.

— How long process has computed, and how much longer to completion.
— Resources the process has used.

— Resources process needs to complete.

— Is the process interactive or batch?

— How many processes will need to be terminated.

Starvation: Same process may always be picked as victim, we should include
number of rollback as a cost factor.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 54 Ba g aaun

Recovery from Deadlock: By Resource Preemption

BSOS a0

* Preempt some resources from the processes and give them to other
processes until the deadlock cycle is broken. Three issues need to
be addressed.

— Selecting a victim: we must determine the order of preemption to
minimize the cost. i.e. priority, age of the process with the
resource.

FoLr L@@

— Rollback: We must return the process to a safe state, and restart
the process form that state. Need to save the state of the process
with the preempted resource.

— Starvation: Same process's resources may always be picked as
victim, we should include number of rollback as a cost factor.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 55 BaaaaTnm

An Integrated Deadlock Handling Strategy
BSaaaTh

« Each deadlock strategy has its strengths and weaknesses.
Using a single strategy may be inefficient.

« Modern OSs combine the three basic approaches (Prevention, Avoidance,
Detection)

« Allowing the use of the optimal approach for each of resources in the system.

— For I/O devices, and files as resources use Prevention through resource
ordering, no selection among pending processes.

— For main memory use Prevention through Preemption, a process can
always be swapped-out.

— For assignable devices: if device-requirement information is available use
Avoidance.

— For swap space use Avoidance, since maximal storage requirements are
known in advance.

FoLr L@@
[]

« Use most appropriate technique for handling deadlocks within each class.
— For database records that need locking first and then updating

— Deadlocks occur frequently because records are dynamically requested
by competing processes.

— DBMSs, therefore, need to employ deadlock detection and recovery
procedures.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 56 B agaaam

ncurrency Vs. Parallelism
R Concurrency Vs. Parallelis

‘ Parallel Processing I

FoLr L@@

n)— —

P2 I—> — CPU
-

| time I
‘ No of executing processes < the number of CPUs I

Dr. Tarek Helmy, ICS-KFUPM 57 B aaau%

FFdfLo LD

Concurrency Vs. Parallelism
RS aaaah

FoLr L@@

| Concurrent Processing I

P2 — — > CPU

‘ Number of simultaneously executing processes > number of CPUs I

Dr. Tarek Helmy, ICS-KFUPM 58 BSaaamh

FFdfLo LD

BSOS aaaah

FoL L Ll e

Dr. Tarek Helmy, ICS-KFUPM

The End!!

59

Baaaaah

FF L L L

