
Dr. Tarek Helmy, ICS-KFUPM 1

Chapter 3: Process Management

Dr. Tarek Helmy El-Basuny

Week 4

Operating Systems ICS 431

Dr. Tarek Helmy, ICS-KFUPM 2

• In this chapter, we will discuss:
– The Process Concept: Definition, Components, Sharing, …
– Process states: New, Ready, Running, Waiting, Terminated
– Process Control Block (PCB): Its contents and dependency of HW and SW
– Context switching among processes and its overhead
– Reasons for the Context Switching: Multitasking, Interrupts, Mode switch, ..
– Process Scheduling Queues: Job, Ready and Device queues
– Process Scheduling: Scheduling evaluation Criteria: CPU utilization, fairness, responsiveness
– Different Types of Schedulers: Short, Medium, and Long-Term Schedulers
– Operations on Processes: Creation, Interpretation, Execution, and Termination,
– Parent and Children Processes: Resources, execution, and address space sharing
– Reasons for child Process Termination: Voluntary and Involuntary termination
– Cooperating/Dependent & Independent Processes, advantages of cooperating Processes
– IPC through Message Passing: Blocking or non-blocking message sending and receiving
– IPC through Buffering (Shared Memory): Buffer size constrains on the communicating processes
– Producer-Consumer processes as an example of cooperating processes & their synchronization
– Inter-Process Communication (IPC): Direct and Indirect modes
– IPC in Client-Server processes:

• Sockets, Remote Procedure Calls, Remote Method Invocation (Java)

Process Management

Dr. Tarek Helmy, ICS-KFUPM 3

The Process Concept

• A Program is a passive entity; just a sequence of instructions or lines
of code to solve a certain problem.

• A Process is an instance of a program in execution.
– A Process consists of information about the running program, i.e.:

• Where in the execution sequence it is,
• The state of the process,
• A portion of memory allocated to it,
• A bunch of resources allocated to it,

• A Process in memory includes:
– Code/Text section (contains the compiled code of the program)
– Data section (stores global and static variables, allocated and

initialized prior to execution).
– State (Newly created, Running, Waiting, …).
– The heap is used for dynamic memory allocation, and is managed

via calls to new, malloc, delete, free, etc.
– The stack is used for local variables.

• A Thread is a child process, or lightweight process, or a sequential flow
of control within a process.

A process in
memory

Code Data State

Dr. Tarek Helmy, ICS-KFUPM 4

Can processes share the code section and why?

• Yes, two concurrent instances of processes can share the code

section of the parent process.
– Example: Opening two word files on the same machine, both will use the same

code section while each will have its own data and sate.

• Why? to maximize the memory utilization.

Code (editor) Data (file1) State

Data (file2) State

P1

P2

Dr. Tarek Helmy, ICS-KFUPM 5

Process States: Five-Six State Model

• Newly created:
– A process has been created but has not yet been

admitted to the pool of executable processes, i.e.
– Submission of a batch job
– User logs on
– Process creates a child process.

• Ready
– Processes with all needed resources are

available and can be allocated.
• Running

– Dispatched to the CPU
• Blocked/Waiting

– A process that cannot execute until
 a specified event such as an IO completion
 occurs (Waiting for I/O).

• Suspended: i.e. due to limited memory availability.
• Terminated:

– Batch job issues a Halt instruction
– User logs off
– Quit an application
– Error and fault conditions that can not resolved.

5-States Model

6-States Model

Dr. Tarek Helmy, ICS-KFUPM 6

Reasons for Process Termination

• Normal completion after finishing its job.
• Time limit exceeded due to some fatal reasons or the process waited longer than a

specified maximum for an event.
• A process requires more memory to execute but the system fails to provide enough

memory to the process for its execution.
• Protection error has been occurred, i.e. write to a read-only file, etc.
• Arithmetic error, i.e. div/zero, etc.
• I/O failure: When a process attempts to use an I/O device and I/O device is not working

fine at the moment. i.e, a process that wants to print a file on the printer, but the printer
is defective.

• Invalid instruction: Happens when trying to execute data or to execute an instruction
that is reserved for only OS.

• OS intervention: In some critical cases, the OS takes control of the process and stops
the execution of the process. i.e, if a deadlock occurs, or deadlock can occur,

• Parent Request: If a parent process request for terminating the child process. Then,
the child process should be terminated.

• Parent Termination: When the parent is not in CPU, child process can’t exist in CPU,
child process also needs to be terminated.

• Bounds violation: When the process tries to access non assigned memory spaces or
disks.

Dr. Tarek Helmy, ICS-KFUPM 7

Process Control Block (PCB)

• The OS must know specific information about the process to manage it.

• PCB (Process Descriptor in Linux) is the data structure that stores the following
information about the process:
– Process ID (a unified name assigned by the OS, i.e. an integer or a table

index, etc.),
– Process State (the current state, such as new, running, waiting, ready,

terminated),
– Owner (identified by the owner’s internal identification, such as user’s login

name),
– Program Counter (the address of the next instruction to be executed by the

process),
– CPU Registers (contents of , accumulator register, index registers, stack

pointers, condition-code bits and other general purpose registers)
– CPU Scheduling Information (process priority, pointers to scheduling queues

and other scheduling parameters),
– Process Privileges (Processes are granted privileges in terms of the memory

that may be accessed and the types of instructions that may be executed),
– Parent Process (a pointer to the PCB of the parent process),

Dr. Tarek Helmy, ICS-KFUPM 8

Process Control Block (PCB)

– List of children/siblings (pointers to a list of children processes of
this process),

– Protection Information (description of the access rights currently
held by the process),

– Memory Management Information (such as contents of base and
limit registers, pointers to page tables and segment tables),

– Accounting (usage information such as amount of CPU needed &
used, time limits, memory space required),

– I/O Information (list of I/O devices allocated to this process,
pointers to wait-queues etc),

– Resources controlled by the process may be indicated, such as
opened files, history of processor utilization; this information may
be needed by the scheduler.

– Inter-process Communication Various flags, signals, and
messages may be associated with communication between two
independent processes.

Dr. Tarek Helmy, ICS-KFUPM 9

• We have presented:
– The Process Concept: Definition, components, sharing, …
– Process states: new, ready, running, waiting, terminated
– Process Control Block (PCB): its contents and dependency of HW and SW

• We are going to present:
– Context switching among processes and its overhead
– Reasons for the Context Switching: Multitasking, Interrupts, Mode switch,
– Process Scheduling Queues: Job, Ready and Device queues
– Process Scheduling: Scheduling evaluation Criteria: CPU utilization, fairness, responsiveness
– Different Types of Schedulers: Short, Medium and Long-Term Schedulers
– Parent and Children Processes: Resources, execution, and address space sharing
– Reasons for child Process Termination: Voluntary and Involuntary termination
– Process Management in Unix/Linux: (i.e. Creation, Execution, sleeping, Termination, etc.)
– Cooperating/Dependent & Independent Processes, advantages of cooperating Processes
– IPC through Message Passing: Blocking or non-blocking message sending and receiving
– IPC through Buffering (Shared Memory): Buffer size constrains on the communicating processes
– Inter-Process Communication (IPC): Direct and Indirect modes
– Producer-Consumer processes as an example of cooperating processes & their synchronization
– IPC Facilities in Linux
– Client-Server Process Communication: Sockets, RPC, RMI (Java)

Process Management

Dr. Tarek Helmy, ICS-KFUPM 10

Process Control Block (PCB)

Program counter (PC)
Registers

Memory limits (Base & Limit)

List of open files

Process number

Processor state

…

Machine specific

OS specific
Process state

• When an interrupt occurs, the contents of [Acc, SP, general purpose
registers, index register, base and limit registers] must be saved in
the PCB to allow the process to resume correctly.

• Some of the PCB contents are machine specific and others are OS
specific, i.e.

Dr. Tarek Helmy, ICS-KFUPM 11

Concurrency of Execution

CPU

…, jmp, load, add,…

…, sub, cmp, breq, jmp,…

…, store, mov, add,cmp,… P3

P2

P1

P1 is running

• In a single processor system, if one process can run at a time, this makes
poor CPU utilization.

• The multiprocessing OS is recommended on single processor machines.
• The objective of multiprocessing is to maximize CPU utilization by

concurrent processing:
– Alternate the execution of more than one process.

• Concurrency can be achieved by switching the processor among several
processes, i.e. I/O and Computing Instructions interleaving.

• Switching the CPU from one process to another is called Context Switch.

• Processes can be described as either:
• I/O-bound process: Spends more time doing I/O than computations.
• CPU-bound process: Spends more time doing computations.

Dr. Tarek Helmy, ICS-KFUPM 12

Process Context

• Switching from one process to another process in multiprocessing is called “Process
Context”. This allows multiple processes to share a single CPU, and is an essential
feature of a multiprocessing operating system.

– The OS gives the CPU to another process whenever the running one is waiting for
an I/O operation to complete.

• In a context switch, the OS stores the state of a process/thread, so that it can be
restored and resumed from the same point later.

• We say that process P is active if and only if:
– Its address space is in memory,
– Its PCB data is loaded into the CPU registers.

• When a process P is interrupted (e.g. waiting for I/O), then its context is not active.
• Process Context requires a certain amount of CPU time and should not be frequently

done.

Idle

Running Running

Save state
of P1 into PCB 1

Load state of P2
from PCB 2

Save state of P2
into PCB 2

Load state of P1
from PCB 1

Dr. Tarek Helmy, ICS-KFUPM 13

Overhead of Context Switching

• A context switch occurs whenever an interrupt or an exception occurs, or when a
process issues a system call.

• Switching from one process to another process requires a certain amount of time for
(saving and loading registers, memory maps, updating various tables and lists, etc.)

• The system does no useful work while switching.
– Losing CPU time in loading and storing registers from/into main memory.
– Switching-time depends on hardware support.

• Context switches are usually computationally intensive and much of the operating
systems design is to optimize the overhead of context switches.

Dr. Tarek Helmy, ICS-KFUPM 14

Reasons for Context Switch

• There are three situations where a context switch needs to occur:

1. Multitasking/Multiprocessing: according to the scheduling policy, one

process needs to be switched out of the CPU so another process can run.

2. Interrupt/Exception handling: Modern OSs are interrupt driven. This

means if the CPU requests data from a disk, for example, it does not need

to busy-wait until the read is over, it can issue the request and continue with

some other execution; when the read is over, the CPU can be interrupted

and presented with the read.

3. User and kernel mode switching: When a transition between user mode

and kernel mode is required in an OS. Some OSs may not consider a mode

transition itself a context switch.

Dr. Tarek Helmy, ICS-KFUPM 15

Process Scheduling Queues

• The OS maintains different queues to store the
pointers to the PCBs of all processes in the same
execution state.

• Job queue: Stores the pointers of all newly created
processes in the system.

• Ready queue: Stores the pointers of all processes
residing in main memory, ready and waiting to be
executed by the CPU.

• Device queues: Stores the pointers of all processes
waiting for a certain I/O device. A queue for each
device.

• Processes migrate among the various queues.

Ready Queue

Job Queue

Ready Queue

Device Queue 1
Device Queue 2

Device Queue 3

Dr. Tarek Helmy, ICS-KFUPM 16

Representation of Process Scheduling

Job Queue

Dr. Tarek Helmy, ICS-KFUPM 17

Ready Queue & Various I/O Device Queues

Each PCB includes a pointer field that points to the next PCB in the ready queue.

Ready queue header

Wait queues header

Dr. Tarek Helmy, ICS-KFUPM 18

Process Scheduling

• Process Scheduling: means select one of the “ready” processes to run
next, this decision must:

– Improve/maximize CPU utilization (make it as busy as possible)

– Improve user response time (user’s satisfaction)

– Be fair among concurrently running processes or multi-users.

• The efficiency of Process Scheduling is measured by two
parameters:

1. CPU utilization = Time CPU is doing useful work for the processes

 Total time elapsed

2. Response time = (Process arrival time - Process start time)

• These two goals are often contradictory

• Given a set of processes, finding an optimal scheduling policy that
maximizes CPU utilization, minimizes the response time and supports
fairness among processes is a hot research issue in the OS field.

Dr. Tarek Helmy, ICS-KFUPM 19

Schedulers

Ready
queue

Job
queue CPU

I/O waiting
queue(s) Active I/O

enter end
Long-term

Short-term

Medium-term

• Since, processes migrate among the various scheduling queues (Job

queue, Ready queue, I/O queues) throughout their lifetime.

• The OS must select processes from these queues in some fashion.

• The process selection is carried out by the appropriate scheduler (i.e.

Long-term scheduler, short-term scheduler, medium-term

scheduler) .

Dr. Tarek Helmy, ICS-KFUPM 20

Long-term Scheduler

• Long-term scheduler: acts when a new process is created, it decides
weather to be brought into the ready queue or no?
– This scheduler dictates what processes are to run on a system and the

degree of concurrency to be supported at any time – i.e. whether a high
or low amount of processes are to be executed concurrently.

– (no intelligence required) take the process that its required recourses are
available.

• Long Term Scheduler:
• Runs rarely
• Controls degree of multiprocessing/concurrency
• Tries to balance arrival and departure rate through an appropriate

process mix (I/O bound and CPU bound).

 Ready
queue

Job
queue CPU

I/O waiting
queue(s) Active I/O

enter end
Long-term

Short-term

Dr. Tarek Helmy, ICS-KFUPM 21

Short Term Scheduler

• Short-term scheduler: Selects which process should be executed next (to
be dispatched into the CPU).
– It needs a policy for the selection to make a balance (i.e. FCFS, SJF,

SRTF, RR, Priority, etc. we will study them in chapter 5)
• The Short Term Scheduler runs very frequently and contains:

• Code to remove a process from the processor at the end of its run.
• Process may go to ready queue, or to a wait state or finish/quit.

• Code to select a process from the ready queue.

Medium-term

Ready
queue

Job
queue CPU

I/O waiting
queue(s) Active I/O

enter end
Long-term

Short-term

Dr. Tarek Helmy, ICS-KFUPM 22

Medium Term Scheduler

• The mid-term scheduler exists in all systems with virtual memory support, temporarily
swaps out processes from the main memory and places them on virtual memory or vice
versa.

• It may decide to swap out a process:
– Has not been active for some time,
– Has a low priority,
– With high page fault frequently,
– Taking up a large amount of memory in order to free up main memory for other

processes, swapping the process back in later when more memory is available, or
– etc….

Dr. Tarek Helmy, ICS-KFUPM 23

A Process from its Creation to the Termination

• Operations on Processes include: Interpretation, Creation, executing, terminating:

• User types a “xxx” at CLI’s shell or double click on “xxx” at GUI’s shell.

– Note: shell is the interface where we can interact with the OS.

• The command will be parsed and interpreted by the “shell” command interpreter.

• The executable program “xxx” needs to be located on disk (file system, I/O device
driver for disk).

• The content of the program xxx will be loaded (load module) into memory and the
control transferred to the OS ==> process comes alive! .

• Required resources will be verified and dispatch the process into the CPU for running.

• During execution, the process may call OS to perform I/O (console, disk, printer, etc.)
(system call interface, I/O device drivers).

• While running the process, it may create a child process.

• When the process terminates, the allocated memory and resources will be reclaimed.
(memory management).

Dr. Tarek Helmy, ICS-KFUPM 24

Parent and Children Processes

• The OS allows a parent process to create
children processes, which, in turn may create
other children processes, forming a tree of
processes.

• Resources sharing
• The parent and children share all

resources.
• The children share subset of parent’s

resources.
• The parent and the child share no

resources.
• Execution

• The parent and children execute
concurrently.

• The parent waits until children terminate.
• Address space

• A child process is a duplicate of a parent
process.

• A child has its address space loaded into
it.

Dr. Tarek Helmy, ICS-KFUPM 25

Child Process Termination

Reasons for a child Process Termination:
1. Normal exit (voluntary), due to the completion of its job.
2. Error exit (voluntary), an error caused by the child process and can not

be served by the OS.
3. Fatal error (involuntary), trying to run a program that is not exist.
4. Killed by the parent process (involuntary) if:

– The child has exceeded allocated resources.
– The task assigned to the child is no longer required.
– The parent is exiting.

• Some OSs do not allow a child process to continue if its parent
has been terminated (cascading termination).

exit exit exit exit

Dr. Tarek Helmy, ICS-KFUPM 26

Process Management in UNIX

Basic commands of process management in Unix: (i.e. creation, execution, waiting, exiting, killing)
– fork() command creates a child process such that it inherits copies of all parent ’ s variables.
– exec() command allows a process to “load” a child and start executing it.
– exit() command causes normal process termination (closes all open files, connections, de-

allocates memory, de-allocates most of the OS structures supporting the child process), and
checks if the parent is alive then it holds the result value until the parent requests it.

– wait() command puts the parent to sleep waiting for a child’s result.
– ptrace() command allow a parent process to observe and control the execution of a child

process.
– nice() command can be used to reduced the priority of a process and thus be ‘nice’ to the

other processes.
– sleep(), command delays the execution start time of a command by some number of

seconds that the user specifies.
– kill() <pid> command will terminate a process with the process id <pid>. The pid of a

process can be obtained using the ‘ps’ command.
– ps command gives information about the process including the pid, terminal name, time of

creation and name of the process, etc…

Dr. Tarek Helmy, ICS-KFUPM 27

Process Management in Linux-1

– Create a process by running a program (writing its name then press enter key from the
CLI.)

– You can run many processes either foreground or background concurrently.
– You can also move the process from foreground to background by the commands fg

process name or bg process name but you need to close the process CTRL+Z first.
– Use top command to tell the user about all the running processes in Linux, or tasklist in

windows. It displays:

– Where, PID is the user ID number. User is the owner of the process. PR is the priority
(20 high to -20 low).

– NI is the nice value (priority index and can be changed like priority) of the process,
VIRT is the amount of the virtual memory taken by the process in KB.

– RES is the physical memory used in KB.
– SHR is the shared memory used.
– S is the status of the process (sleeping/S or running/R or traced/stopped/T or …
– %CPU and %MEM are the % of CPU time and memory used. TIME+ is the total time.

Dr. Tarek Helmy, ICS-KFUPM 28

Process Management in Linux-2

– Use ps command displays the process status. Like task manager in

windows machine.

– ps ux to display the status of all the processes under this user, or ps PID for

only one process. You can get the PID of the process by pidof process

name.

– kill command terminates a process running on the Linux machine. i.e. kill

PID, or taskkill /PID in windows

– nice command starts a process with the given priority.

– renice changes the priority of a process (changes from -20 to 19, the default

value is 0). Its syntax is nice –n nice-value process-name.

– df gives us the free HD space on the system.

– free gives us the details of the free RAM space on the system.

Dr. Tarek Helmy, ICS-KFUPM 29

Independent & Cooperating/Dependent Processes
• Independent process: a process that is independent of the rest

of the processes. It does not affect or be affected by the
execution of another process. OS support is:
– Its state is not shared in any way by any other process.
– It does not share any information with other processes.
– It is ok to run independent processes in parallel on separate

processors.
• Dependent/Cooperating process: a process that affect or be

affected by the execution of another process. OS support is:
– Passing information between processes
– Making sure that processes do not interfere with each other
– Ensuring proper sequencing of dependent operations

 Why do we need Cooperating Processes?
• Information sharing: several processes may be interested in the

same piece of info.
• Computation speed-up: for a particular process to run faster, it

could be broken into sub-processes, each of which executes in
parallel especially if the computer has multiple processing
elements (CPU’s or I/O channels).

• Modularity: helps construct the program in a modular fashion
dividing the system functions into separate cooperating processes.

• Convenience: even an individual user may have many processes
on which to work at one time. The user may be editing, printing,
compiling in parallel. This will enhance the user’s satisfaction.

U1 U3 U2 Un

Information

TASK

System Functions

p1 p3 p2 pn

Individual User

t1 t3 t2 tN

Dr. Tarek Helmy, ICS-KFUPM 30

Inter-Processes Communication Models

• Inter-process communication is the mechanism provided
by the OS that allows processes to communicate with
each other. i.e.

– A process letting another process know that some
event has occurred or transferring of data from one
process to another

• The models of inter-process communication:
 Shared Memory Model

• Shared memory is the memory that can be
simultaneously accessed by multiple processes.

• Advantage of Shared Memory Model
• Memory communication is faster on the shared

memory model as compared to the message
passing model on the same machine.

• Disadvantages of Shared Memory Model
• All the processes that use the shared memory

model need to make sure that they are not
writing to the same memory location.

• Required synchronization and memory
protection that need to be addressed.

Dr. Tarek Helmy, ICS-KFUPM 31

Inter-Processes Communication Models

• Message Passing Model
• Multiple processes can read and write data to the

message queue without being connected to each
other.
– i.e. processes P1 and P2 can access the message

queue and store and retrieve data.
• Messages are stored on the queue until their receiver

retrieves them.
• Message queues are quite useful for inter-process

communication and are used by most OSs
– Advantage of Messaging Passing Model

• The message passing model is much easier to
implement than the shared memory model.

– Disadvantage of Messaging Passing Model
• The message passing model has slower

communication than the shared memory
model because the connection setup takes
time.

Dr. Tarek Helmy, ICS-KFUPM 32

Cooperating Processes Communication

• Cooperating processes need to communication:

1. Message Passing (MP) through the OS kernel.

– Processes communicate by sending/receiving messages through the OS
kernel.

2. Through Distributed Shared Memory (DSM)

– Processes communicate through a “virtual shared memory”.

 To allow cooperation, there should be some mechanism for communication
(called IPC: Inter-Process Comm.) and to synchronize their actions.

... Send

Sending Q

...

Receiving Q
Receive

Dr. Tarek Helmy, ICS-KFUPM 33

Cooperating Processes: Message Passing

• Messages exchanged by communicating processes reside in a temporary
queue/buffer.

• A buffer/queue of messages could be provided by the sender’s kernel,
receiver’s kernel, and/or in the communication network.

• Can be logically combined into one big buffer.
• A queue/buffer assigned to the processes implemented in one of three ways:

1. Zero capacity: Max. length is 0 message (means no buffering), sender must
wait for receiver (rendezvous).

2. Bounded capacity: Finite length of n messages can be buffered, sender
must wait if the queue is full.

3. Unbounded capacity: Infinite length, means can buffer any produced
message, sender never waits.

Dr. Tarek Helmy, ICS-KFUPM 34

Blocking and Non-Blocking Message Passing

• Message passing supported in two different modes (either

blocking/synchronous or non-blocking/asynchronous).

• Send and receive primitives may be either blocking or non-blocking.

• Blocking/synchronous send: means the sending process is blocked

until the message is received by the mailbox/buffer or the receiving

process.

• Non-blocking/asynchronous send: means the sending process

sends the message and restarts operation.

• Blocking receive: means the receiver process blocked until a

message is available in the buffer.

• Non-blocking receive: means the receiver process retrieves either a

valid message or null.

Dr. Tarek Helmy, ICS-KFUPM

IPC using Message Passing

• Message passing is a general method for Inter-process communication (IPC)
– For processes inside the same computer to communicate.
– For processes in a distributed system environment.

• Major issues of Message Passing Communication

– Is it direct or indirect addressing?
– Is it blocking or non-blocking communication?
– Is it reliable or unreliable communication?
– Is it buffered or un-buffered communication?

• Purpose of IPC by using Message Passing

– Data Transfer
– Sharing Data
– Event notification
– Synchronization
– Mutual Exclusion
– Process Control

Dr. Tarek Helmy, ICS-KFUPM 36

Direct Process Communication

• If P and Q processes wish to communicate, they need to:

– Establish a communication link between them

– Exchange messages via send and receive commands

• The IPC mechanism allows processes to communicate and to synchronize
their actions.

• IPC facility provides two operations:

– Send(message) to a process – message size may be static or variable.

– Receive(message)

• Implementation of the communication link

– Physical (e.g., shared memory, hardware bus)

– Logical (e.g., initiating sockets, ports,..)

• The OS provides IPC mechanisms for processes to communicate and to
synchronize their actions without sharing the same address-space.

• Good for distributed environment.

Dr. Tarek Helmy, ICS-KFUPM 37

Direct Process Communication

• Processes must name each other explicitly:
– Send(P, message) – send a message to process P.
– Receive(Q, message)- receives a message from process Q
– Receive(ID, message)- receives a message from the sender with ID.

• Properties of communication link
– Links are established automatically.
– A link is associated with exactly one pair of communicating processes.
– Between each pair there exists exactly one link.
– The link may be unidirectional, but is usually bi-directional.
– Receiver may not need ID of the sender (known by default).

Disadvantage of Direct process Communication:
• A process must know the name or ID of the process it wishes to

communicate with.
• They can't be easily changed since they are explicitly named in the send and

receive.

Dr. Tarek Helmy, ICS-KFUPM 38

Indirect Process Communication

• Messages are directed to and received from mailboxes or Ports.
• A mailbox is an object into which messages can be placed by processes and

from which messages can be removed by other processes.
• Ownership of the Mailbox:

– Process owns it:
– Only the owner may receive messages through this mailbox.
– Other processes may only send.
– When process terminates any “owned” mailboxes are destroyed.

– System owns it:
– Process that creates mailbox owns it and receives through it
– When the process terminates the system transfers ownership to the

parent process.
• IPC mechanism provides operations to:

– Create a new mailbox
– Send and receive messages through the mailbox.
– Destroy a mailbox

• Primitives are defined as:
– Open (mailbox_name);
– Send (A, message) – sends a message to mailbox A.
– Receive (A, message) - receives a message from mailbox A.

Dr. Tarek Helmy, ICS-KFUPM 39

Indirect Process Communication

• Properties of communication link:
– Each mailbox has a unique ID.
– Processes can communicate only if they share a mailbox.
– A link may be associated with many processes.
– Each pair of processes may share several communication links.
– Link may be unidirectional or bi-directional.

• Mailbox sharing Problems:
– P1, P2, and P3 share mailbox A.
– P1 sends;
– Who gets the message (P2 and/or P3?)

• Solutions:
– Allow a link to be associated with at most two processes.
– Allow only one process at a time to execute a receive operation.
– Allow the system to select randomly the receiver.
– Sender is notified who the receiver was.

Dr. Tarek Helmy, ICS-KFUPM 40

Cooperating Processes: Producer-Consumer

• As an example of cooperating processes: a producer process produces
information that is consumed by a consumer process.

• Cooperation processes must use IPC Mechanisms to coordinate their execution,
i.e..
– Message Passing Interfaces, i.e. Sockets, Streams, Pipes, etc.
– Shared Memory: Non-message passing systems

• i.e., if a buffer is used by the producer and consumer process to communicate.
• The producer and consumer processes must be synchronized based on the size

of the used buffer. i.e.
– With unbounded-buffer where no practical limit on the size of the buffer.

• The consumer process may have to wait for a new item, if the buffer is
empty, but the producer always produces items.

– With bounded-buffer where there is a fixed buffer size.
• The producer process must wait if the buffer is full and the consumer must

wait if the buffer is empty.
– The buffer may be either provided by the OS IPC facility, or coded by the

application programmer using shared memory.
• Dangers of cooperating processes without synchronizing of their processing

– Data corruption, deadlocks, increased complexity.

Dr. Tarek Helmy, ICS-KFUPM 41

The Producer-Consumer Processes

• From time to time, the producer places an item into the buffer.

• The consumer removes an item from the buffer.

• Careful synchronization/coordination is required.
• The consumer must wait if the buffer is empty.

• The producer must wait if the buffer is full.

• Typical solution would involve a shared variable called count
to monitor the buffer size.

Producer
Process

Consumer
Process

P
Shared Buffer

C

Dr. Tarek Helmy, ICS-KFUPM 42

Bounded-Buffer Solution

• If the shared buffer is implemented as a circular array with two logical
pointers, in & out.
– in points to the next free position in the buffer where the producer puts an

item.
– out points to the first full position in the buffer where the consumer can

get.

• When in = out, the buffer is empty.
• When ((in+1) % BUFFER _SIZE) = out), the buffer is full.

Out: Consumer

In: Producer

There are Free
space

Buffered
Items

Dr. Tarek Helmy, ICS-KFUPM

A Producer process "produces" information
to be "consumed" by a Consumer process.

The Producer Consumer Processes

item nextProduced;

while (1) {

while (counter ==
BUFFER_SIZE);

/*do nothing*/

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

/*incremented every time we
add element*/

counter++;}

item nextConsumed;

while (1) {

while (counter == 0);
/*do nothing*/
nextConsumed = buffer[out];
out = (out + 1)%
BUFFER_SIZE;
/*decremented every time we
remove element*/
counter--;

}

#define BUFFER_SIZE 10
typedef struct {
 DATA data;
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

PRODUCER

CONSUMER

Producer

Process

Consumer

Process

Declaration

Dr. Tarek Helmy, ICS-KFUPM 44

IPC Facilities in Linux

• The Linux kernel provides the following IPC mechanisms:
– Signals: the kernel notifies a process when an event occurs by interrupting the

process's normal flow of execution and invoking one of the signal handler functions
registered by the process or the default signal handler by the kernel.

– Named Pipes or FIFOs: Allows two processes that are not related to
communicate. The processes communicate using named pipes by opening a special
file known as a FIFO file. One process opens the FIFO file for writing while the other
process opens the same file for reading.

– Anonymous Pipes: Provides a mechanism for one process to stream data to another
process. A pipe has two ends associated with a pair of file descriptors. One for reading
and the other for writing.

– Message Queues: One process writes a message packet on the message queue and
exits. Another process can access the message packet from the same message queue
at a latter point in time.

– Shared memory: Allows one process to share a region of memory in its address space
with another. This allows two or more processes to communicate data more efficiently
amongst themselves with minimal kernel intervention.

– Network Sockets: Network Sockets API provides mechanisms for communication
between processes that run on different hosts on a network.

• For more information of how to create and use: https://www.tldp.org/LDP/lpg/node7.html
or http://man7.org/conf/lca2013/IPC_Overview-LCA-2013-printable.pdf or
https://www.tutorialspoint.com/unix_commands/ipcs.htm

Dr. Tarek Helmy, ICS-KFUPM

Pipes for Processes Communication

• Pipe sets up communication channel between two (related) processes.
• One process writes to the pipe, the other reads from the pipe.

#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
char *message = "This is a message!!!" ;
main()
{ char buf[1024] ;
 int fd[2];
 pipe(fd); /*create pipe*/
 if (fork() != 0) { /* I am the parent */
 write(fd[1], message, strlen (message) + 1) ;
 }
 else { /*Child code */
 read(fd[0], buf, 1024) ;
 printf("Got this from MaMa!!: %s\n", buf) ;
 }
}

Process Process

c D
Pipe Pipe

• Sometimes useful to connect a set of
processes in a pipeline.

• Process A writes to pipe AB,

• Process B reads from AB and writes to BC

• Process C reads from BC and writes to CD.

Dr. Tarek Helmy, ICS-KFUPM

Shared Memory Processes Communication

• Common chunk of read/write memory among processes, here’s a c code
example to create a shared memory:

int shmget(key_t key, size_t size, int shmflg);

Example:

key_t key;

int shmid;

key = ftok(“<somefile>", ‘A');

shmid = shmget(key, 1024, 0644 | IPC_CREAT);

Process 1 Process 2

ptr
Attach

Process 3 Process 4 Process 5

ptr ptr ptr

ptr
Attach

Create

Shared Memory
(unique key)

MAX

Dr. Tarek Helmy, ICS-KFUPM 47

Implementation Questions

Questions Direct Communications Indirect Communications

How are links
established?

Automatically established between
every pair of processes that want to
communicate

Messages are sent to and received
from mailboxes/ port.

Can a link be
associated with
more than two
processes?

No – a link is associated with
exactly 2 processes

Yes - a link may be associated with
more than 2 processes

How many links
can there be
between every
pair?

Exactly one link exists between
each pair of processes

A number of links may exist between
each pair of communicating processes,
with each link corresponding to one
mailbox

Send Receive
Primitives?

Send (P, message)
// send a message to P
Receive (Q, message)
//receive message from Q

Send (A, message)
//send a message to mailbox A
Receive (A, message)
//receive a message from mailbox A

P Q

P Q

P Q

P Q
Mailbox/

Port

P R Mailbox/
Port S

Q

P Q
Port

Port

Dr. Tarek Helmy, ICS-KFUPM 48

Client & Server Processes Communication

• The server’s process provides some services
– It must be started first,
– It waits for connections,
– Must be secure, reliable and perform well,
– It does not know who will connect with or when it will connect?

• The client’s process connect to a running server’s process
– It knows who it is connecting to,
– It initiates interaction,
– Must be easy to use,
– Should be portable to run on many platforms.

• Both client and server processes agree on how to exchange data
• Once a socket (communication channel) is created and a connection established.
Server’s process:
• Listens for connection requests on a specified port,
• Accepts connection requests and gets a socket for each connection,
• Reads and writes data as required,
• Closes the connections,
• Deletes the sockets.
Client’s process:
• Connects to a server on a specified IP and Port (client’s port is dynamically assigned)
• Reads and writes data as necessary,
• Disconnects from the server,
• Deletes socket.

Dr. Tarek Helmy, ICS-KFUPM

Client-Server Processes Communication

• Using Sockets

• Using Remote Procedure Calls

• Using Remote Method Invocation (Java)

Dr. Tarek Helmy, ICS-KFUPM 50

Socket Programming using TCP

• Socket: a door between a process and a Transmission Protocol. Two types of
transmission service via socket are (UDP or TCP):

• UDP (User Datagram Protocol) [does not guarantee a reliable transfer of bytes] it
offers a limited amount of service when messages are exchanged between
computers in a network that uses the Internet.

• TCP guarantees delivery of data and also guarantees that packets will be delivered
in the same order in which they were sent.

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,

variables

socket

controlled by
application
developer
controlled by
operating
system

host or
server

internet

message

agreed port any port socket socket

Internet address = 138.37.88.249 Internet address = 138.37.94.248

other ports
client server

Dr. Tarek Helmy, ICS-KFUPM 51

Socket “Communication Channel”

• A socket is identified by an IP address

concatenated with a port.

– The socket 161.25.19.8:1625 refers to

port 1625 on host 161.25.19.8

• The server waits for incoming client requests

by listening to a specified port. Usually many
ports below 1024 are well known and used
for standard services. FTP [21], Telnet

server [23], http server [80], SMTP [25],

POP3 [110], …..

• When a client initiates a request for

connection, it is automatically assigned a port

(>1024) by the host computer.

Dr. Tarek Helmy, ICS-KFUPM 52

IP 164.86.5.20

Ethernet

TCP

Process 1

Port 1625

IP 161.25.19.8

Ethernet

TCP

Process 2

Port 80

Host X Web Server

• A client on host X [164.86.5.20] wants to establish a connection with the
Web server [161.25.19.8] which is listening to port 80.

• The host X may be assigned port 1625.

• The connection will consist of a pair of sockets:

• The socket 164.86.5.20:1625 refers to port 1625 on host X and
161.25.19.8:80 on the Web server.

Socket “Communication Channel”

Dr. Tarek Helmy, ICS-KFUPM 53

Establishing a Simple Server (Stream Socket) in Java

• Step1: Create a ServerSocket Object

– ServerSocket s = new ServerSocket(port)

• Step2: Create a Socket and Wait for a Connection

– Socket connect = s.accept()

• Step3: Associate Input and Output Stream with the
Socket

– connect.getInputStream

– connect.getOutputStream

• Step4: Process Connection

• Step5: Close Connection

Dr. Tarek Helmy, ICS-KFUPM 54

Establishing a Simple Client (Stream Socket) in Java

• Step1: Create a Socket to make connection

– Socket connect = new Socket(Server IP, port)

• Step2: Associate Input and Output Stream with the
Socket

– connect.getInputStream

– connect.getOutputStream

• Step3: Process Connection

• Step4: Close Connection

Dr. Tarek Helmy, ICS-KFUPM 55

Socket Communication Steps

• Socket system call: Create a socket
• Bind system call: A name and an address are bounded to a socket.
• Listen system call: The server must listen to its socket, by telling the kernel that it

is ready to accept connections from clients.
• Accept system call: The server can accept or select connections from clients.
• Connect system Call: The client connects to the socket. It needs to provide the

socket address by which it can reach the server.
• Read/Write system call: Client and server communicate through read/write

operations on their respective sockets.
• Close system call: Terminates a connection and destroy the associated socket.

Rendezvous
Request Reply

Dr. Tarek Helmy, ICS-KFUPM 56

Remote Procedure Call (RPC)

• Remote Procedure Calls are much
more complex than a local
subroutine or a method call.

• Subroutine and co-routine calls are
generally made within an application
or between co-applications that run
on a the same system.

• RPC’s, on the other hand, are made
between systems that are
interconnected by a network.

• The server also must handle
simultaneous requests from many
clients.

• This also implies a need for
synchronization among requests.

Application

Main
Body

Procedure

Procedure

Main
Body

Procedure

Procedure

Application

Client Server Network

Dr. Tarek Helmy, ICS-KFUPM 57

Remote Procedure Calls: Stubs

• Client makes procedure call (like a local procedure call) to the client stub.

• A stub is a piece of code that converts parameters passed between client
and server during a remote procedure call (RPC).

• Client Stub locates the server and the port on the server.

• Client Stubs take care of packaging arguments and sending messages.

• Packaging parameters is called marshalling

• The server-stub receives the message, unpacks the marshaled parameters,
and invokes the procedure on the server and then return the value.

Main
Body

Procedure

Procedure

Client Server Network

Server
Stubs

Client
Stubs

Dr. Tarek Helmy, ICS-KFUPM 58

Steps of a Remote Procedure Call

1. Client procedure calls client’s stub in
normal way.

2. Client’s stub builds/packs a message
and calls it local OS.

3. Client's OS sends the message to the
remote OS.

4. The remote OS gives the message to
server’s stub.

5. Server’s stub unpacks parameters,
calls server.

6. Server does work, returns result to the
stub.

7. Server’s stub packs it in message, calls
local OS.

8. Server's OS sends message to client's
OS.

9. Client's OS gives message to client
stub.

10. Client’s stub unpacks result, returns to
client.

Dr. Tarek Helmy, ICS-KFUPM 59

Marshalling

• Problem: Different machines have different data formats.

– Intel: little endian, SPARC: big endian

• Solution: Use a standard machine independent representation.

– Example: eXternal Data Representation (XDR)

– XDR is a data abstraction needed for machine independent

communication.

• Marshalling: Transform parameters/results into a byte stream.

Dr. Tarek Helmy, ICS-KFUPM 60

Java RMI

• RMI allows an object running in one JVM to invoke methods on an object
running in another JVM.

• RMI can be used to allow object’s methods to invoke other object’s methods
running in the same or remote machine.

• The RMI mechanism is basically an object-oriented RPC mechanism.
• Objects can be passed as arguments and returned as results
• Any Java object can be passed during invocation including primitive types,

core classes, user-defined classes and Java-Beans
• Syntax of RMI is same as the local method invocations
• RMI operates only in Java-Java domain.

TCP

JVM

Client
Object

JVM

Remote
Object

Dr. Tarek Helmy, ICS-KFUPM 61

RMI Registry

• The server’s object must register itself under some name where it

can be reached.

• Under RMI, this is done with the RMI Registry, a separate process

that must be running, usually on the server machine.

• Once an object has been registered, any other objects can use the

Object Registry to obtain access to its methods remotely using the

name of the object.

Dr. Tarek Helmy, ICS-KFUPM

RMI Layers

TCP

Remote Reference Layer

Transport Layer

JVM

Client Object

Remote Reference Layer

Transport Layer

JVM

Stub

Remote Object

Skeleton

Dr. Tarek Helmy, ICS-KFUPM 63

Marshalling Parameters

• Stub: is responsible of creating a parcel consisting of the name of the method to be

invoked on the server and the marshaled parameters for the method.

• Stub locates the server, sends the parcel to the skeleton of the server.

• The skeleton is responsible for un-marshalling the parameters and invoking the

desired method on the server.

• The skeleton then marshals the return value into a parcel and send it to the Stub.

• The stub receives this message, unpacks the marshaled return value and passes it

to the client.

Dr. Tarek Helmy, ICS-KFUPM 64

RPC/RMI Differences

• Client /Server?
– RPC is typical client/server application

• Server defines procedure.
• Client invokes it.

– But RMI provides more flexible way.
• Dynamic class loading

• Safe & Security?
– RPC Security mechanism

• Operating System based
– RMI Security mechanism

• Uses Java’s built in Security features
• A security manager has to be installed before RMI can be used

• Object -Oriented?
– RPC is not Object-Oriented.
– RMI is Object-Oriented.

• Language independent?
– RPC was designed for a heterogeneous environment. Use eXternal

Data Representation (XDR) protocol to standardizes the representation
of data.

– RMI was designed for JAVA to JAVA environment.

Dr. Tarek Helmy, ICS-KFUPM 65

Pop-up Quiz

… Queue … Queue CPU

….Queue I/O devices

enter end

………. Scheduler ……... Scheduler

……. Scheduler

• On the following diagram, fill the dots in every rectangle with the name of the queue
and the scheduler. Explain the main function of every queue and scheduler.

Dr. Tarek Helmy, ICS-KFUPM 66

The End!!

Thank you

Any Questions?

	Slide Number 1
	Slide Number 2
	The Process Concept
	Can processes share the code section and why?
	Process States: Five-Six State Model
	Reasons for Process Termination
	Process Control Block (PCB)
	Process Control Block (PCB)
	Slide Number 9
	Process Control Block (PCB)
	Concurrency of Execution
	Process Context
	Overhead of Context Switching
	Reasons for Context Switch
	Process Scheduling Queues
	Representation of Process Scheduling
	Ready Queue & Various I/O Device Queues
	Process Scheduling
	Schedulers
	Long-term Scheduler
	Short Term Scheduler
	Medium Term Scheduler
	A Process from its Creation to the Termination
	Parent and Children Processes
	Child Process Termination
	Process Management in UNIX
	Process Management in Linux-1
	Process Management in Linux-2
	Independent & Cooperating/Dependent Processes
	Inter-Processes Communication Models
	Inter-Processes Communication Models
	Cooperating Processes Communication
	Cooperating Processes: Message Passing
	Blocking and Non-Blocking Message Passing
	IPC using Message Passing
	Direct Process Communication
	Direct Process Communication
	Indirect Process Communication
	Indirect Process Communication
	Cooperating Processes: Producer-Consumer
	The Producer-Consumer Processes
	Bounded-Buffer Solution
	Slide Number 43
	IPC Facilities in Linux
	Pipes for Processes Communication
	Shared Memory Processes Communication
	Implementation Questions
	Client & Server Processes Communication
	Client-Server Processes Communication
	Socket Programming using TCP
	Socket “Communication Channel”
	Socket “Communication Channel”
	Establishing a Simple Server (Stream Socket) in Java
	Establishing a Simple Client (Stream Socket) in Java
	Socket Communication Steps
	Remote Procedure Call (RPC)
	Remote Procedure Calls: Stubs
	Steps of a Remote Procedure Call
	Marshalling
	Java RMI
	RMI Registry
	RMI Layers
	Marshalling Parameters
	RPC/RMI Differences
	Pop-up Quiz
	Slide Number 66

