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This chapter discuss: 

 Concurrent Processing. 

 Why Process Synchronization? 

 Producer-Consumer Problem 

 How  do processes work with resources that must be shared between them? 

 Atomic Operation 

 The Critical-Section 

 Critical section Implementation 

 Evaluating synchronization algorithms of a critical section 

 Different algorithms to Synchronize two Processes enter of Critical Section. 

 Dangers of handling the Critical Section Problem 

 Synchronization Tools  

 Semaphores 

 Incorrect usages of Semaphores 

 Classical Problems of Synchronization 

 Monitors 

 Synchronization in different OSs 

Ch. 6 Process Synchronization 
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Concurrent Processing 

• In a single-processor with multiprocessing system, processes are 

interleaved in time to yield the appearance of simultaneous execution. Even 

though actual parallelism is not achieved and there is overhead in switching 

between processes, interleaved executions provide major benefits in 

processing efficiency and in program structures. 

• In a multi-processor systems, it is possible not only to interleave the 

execution of processes but also to overlap them.  Although it might seem 

that interleaving and overlapping present different problems, both 

techniques can be viewed as examples of concurrent processing, and both 

present the same problems. 
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Background- Concurrency 

 In order to cooperate, processes must be able to: 

 Communicate with one another 

 Passing information between two or more processes 

 Synchronize their actions 

 Coordinating access to shared resources 

 Hardware (e.g., printers, drives), Software (e.g., shared 

code) 

 Files (e.g., data), Variables (e.g., shared memory 

locations) 

 Concurrent access to shared data may result in data 

inconsistency. 

 Maintaining data consistency requires synchronization 

mechanisms to ensure the orderly execution of cooperating 

processes.  

 Synchronization itself requires some form of communication 
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• Concurrent execution without Synchronization can cause two major problems: 

• Inconsistency due to Race Condition  

– When two or more cooperating processes access and manipulate the same data 

concurrently, and  

– The outcome of the execution depends on the order in which the access takes 

place. 

• Counter = 0; // global variable 

• Thread 1 does Counter++  

• Thread 2 does Counter-- // “at the same time” 

• What is the order of values of Counter ? 

– 0 :  1 : 0? 

– 0 : -1 : 0? 

• Deadlock  

– When two or more waiting processes require shared resource for their continued 

execution,   

– But the required resources are held by other waiting processes. 

• Let us return to the bounded buffer [producer-consumer] problem we presented before.  

Why Process Synchronization? 

shared int x =3;  

process_1 () {  

x = x +1;  

print x; }  

process_2 () { 

x = x -1;  

print x; }  
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Producer-Consumer Problem 

• Example of Cooperating processes that need to be synchronized:  

– Producer process produces information that is consumed by a 

Consumer process. 

• We need buffer of items that can be filled by producer and emptied 

by consumer. 

– Unbounded-buffer places no practical limit on the size of the 

buffer. Consumer may wait, producer never waits. 

 

– Bounded-buffer assumes that there is a fixed buffer size. 

Consumer waits for new item, producer waits if buffer is full. 

 

– Producer and Consumer must be synchronized. How? 
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Producer-Consumer Problem 
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A Producer process "produces" information 

"consumed" by a Consumer process.  

The Producer Consumer Problem 

item   nextProduced; 

while (1) { 

while (counter == 

BUFFER_SIZE); 

/*do nothing*/ 

buffer[in] = nextProduced; 

in = (in + 1) % BUFFER_SIZE; 

/*incremented every time we 

add element*/ 

counter++;} 

item  nextConsumed; 

 

while (1) { 

while (counter == 0); 

/*do nothing*/ 

nextConsumed = buffer[out]; 

out = (out + 1)% 

BUFFER_SIZE; 

/*decremented every time we 

remove element*/ 

counter--; 

} 

#define BUFFER_SIZE 10 

typedef struct { 

    DATA data; 

} item; 

item  buffer[BUFFER_SIZE]; 

int  in = 0;   

int  out = 0; 

PRODUCER 

CONSUMER 

producer consumer 
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Atomic Operation 

 Definition: An atomic operation is the one that executes to 

completion without any interruption or failure. 

• Operations are often not “atomic” 

– Example: x = x + 1 is not atomic! 

• Read/Load x from memory into a register 

• Increment register (x) 

• Store register (x) back to memory 

 

 An atomic operation has “an all or nothing” flavor: 

 Either it executes to completion, or 

 It does not execute at all, and 

 It executes without interruptions. 
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Although both the producer and consumer function well separately, they may not function well 
when executed concurrently!! 

we can show that by implementing the statement “counter++” in machine language as follows:
  register1 = counter 

      register1 = register1 + 1 

    counter = register1 

 The statement “counter--” implemented in machine language as follows:   

  register2 = counter 

      register2 = register2 - 1 

    counter = register2 

Where register 1, 2 are local CPU registers. 

At a micro level, the following scenario could occur using this code. Assume counter is initially 5.  

T0; Producer  Execute register1 = counter                   register1 = 5 

T1; Producer  Execute register1 = register1 + 1                              register1 = 6 

T2; Consumer  Execute register2 = counter            register2 = 5 

T3; Consumer  Execute register2 = register2 - 1          register2 = 4 

T4; Producer   Execute counter   = register1               counter   = 6 

T5; Consumer  Execute counter   = register2                counter   = 4 

The Producer Consumer Problem 

? 

1

0 
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The Critical Section 

• The previous example demonstrates a critical section:  a memory 
location, or part of the process code, or disk space which is shared by 
n processes where all processes may be able to change stored 
values. 

• Critical sections are used frequently in an OS to protect data 
structures (e.g., queues, shared variables, lists, …) 

• Problem:  how to ensure that only 1 process can change the value at 
a time such that all processes know the current value. 

• Critical sections must be protected so that they are mutually exclusive 
of processor access. All code within the section executes atomically 
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Critical Sections 

• A critical section implementation must be: 

• Correct/Mutual Execution: only 1 thread/process can 

execute in the critical section at any given time. 

• Efficient: Getting into and out of critical section must be 

fast. Critical sections should be as short as possible. 

• Concurrency control: A good implementation allows 

maximum concurrency while preserving correctness. 

• Flexible: A good implementation must have as few 

restrictions as practically possible. 
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Mutual Exclusion: Disabling Interrupts 

 The critical section problem could be solved simply in uni-processor 

environment if:  

 Interrupts are disabled while a shared variable is being accessed. 

 Without interrupts no process context switching can occur and this supports 

mutual exclusion.  

 Somewhat dangerous: one process can hold up the CPU forever  

 Endless loop 

 Waiting for resources 

 Efficiency of execution may be degraded 

 Processor has limited ability to interleave programs 

 Used in special-purpose systems with limited hardware 

• In Multiprocessor system 

– Disabling interrupts on one processor will not guarantee  that other 

processors can be interrupted and that means mutual exclusion can not 

be supported. 

– Can we disable interrupts in all processors? 
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A Critical Section environment should contain: 

Entry Section Code requesting entry into the critical section. 

Critical Section Code in which only one process can execute at 

any one time. 

Exit Section The end of the critical section, releasing or 

allowing others to in. 

Remainder Section Rest of the code after the critical section. 

Critical Section 

Entry code CS code Exit code RS code 

Process 

• do{ 

• entry section 

• critical section 

• exit section 

• reminder section 

• } while (TRUE) 
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Evaluating Critical Section Solution 

A solution to the Critical Sections (CS) must satisfy: 

1. Mutual Exclusion:  At most, one process/thread is 

allowed to execute in a shared CS. 

2. Progress: If a process/thread wishes to execute its 

CS (and no other processes/threads are currently 

executing in it) then the processes which are allowed 

to decide if this process/thread gains entrance are 

those not currently executing their remainder section. 

3. Bounded waiting: If a process/thread i is in entry 

section, then there is a bound on the number of times 

that other processes/threads are allowed to enter the 

critical section before process/thread i’s request is 

granted. 

1. P1 wants to enter CS 

2. Any Pi enters its CS at most N times after P1’s 
request 

3. After N entries, P1 must enter its CS 

4. N must be bounded 

Critical Section 

1. only one process 

When exiting from CS 

2. Pick up a process to enter 

3. Delta time exists 

When coming and entering CS 
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Initial Attempts to Solve the CS Problem 

• We restrict our attention to the algorithms that are applicable to only 

two processes at a time: 

• Two processes P0 and P1 (also noted as Pj and Pi) 

  do { 

   entry section 

    critical section 

   exit section 

    reminder section 

   

  } while (True); 

• Processes may share some common variables to synchronize their 

actions. 

16 
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Algorithm 1 

• Uses turn variable to alternate entry into critical sections between 
two processes. 

 

int turn; 

initially turn = 0 

turn = i  Pi  can enter its critical section 

      Process Pi 

  do { 

   while (turn = j) ; 

   critical section 

   turn = j; 

   remainder section 

  } while (True); 
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• This algorithm ensures that only one process can access the CS at a time 

(mutual exclusion) 

• The process of entering the critical section only tests the shared turn variable. 

• Missing the other processes set just delays its entry 

• It does not satisfy the progress requirement. 

• The algorithm does not retain the state of each process in order to get around 

this problem. It remembers only which process is allowed to enter the CS. 

– If turn=0, P0 is executing its remainder section and P1 is ready to enter 

the CS, it is denied since turn<>1 

– However, P0 cannot agree to turn over the CS to P1 since it is currently 

in its remainder section 

– Pi, Pj, Pi, Pj… strict alternation of processes 

– Pi leaves, Pj busy with long I/O, Pi comes back to CS-entry; 

– No one in the CS, but Pi has to wait until Pj to come to the CS. 

– What if Pj never comes back to CS ???? 

Algorithm 1 
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– Shared Variables 

• var flag: array (0..1) of Boolean; 

   initially flag[0] = flag[1] = false; 

• flag[i] = true  Pi ready to enter its critical section 

– Process Pi 
  repeat 
             flag[i] := true;  
             while flag[j] do no-op; 
    critical section 
                flag[i]:= false; 
               remainder section 
  until false 

Can block indefinitely…. Progress requirement not met. 

 

Algorithm 2 (saying I’m using) 

19 



Dr. Tarek Helmy, ICS-KFUPM 

Algorithm 3: Combining Alg.1 & Alg. 2 

• By combining the ideas behind Alg.1 and Alg. 2, we can ensure all 3 

properties 

• Two process solution 

• Processes share both flag and turn variables 

• Two shared variables: 

– int turn;  

• turn indicates whose turn it is to enter the critical section   

– Boolean flag[2] 

• flag[i] = true implies that process Pi is ready 

• Each processes sets a flag to request entry.  Then each process toggles a 

bit to allow the other in first. 

20 
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• Uses flag variables to show requests by 
processes wishing to enter their critical 
sections. 

• Process checks the flag of another 
process and doesn’t enter the critical 
section if that process wants to get in. 

• Flag array[0..1] of Boolean; 

• Flag[0] and Flag[1] are initialized to 
false 

• If Flag[i] is true then Pi is ready to enter 
the CS 

– Do {   
 flag[i] = true; 

  turn=j; 

/*check to see that Pj is false [not ready]*/ 

while (flag[j] && turn==j); 
 [critical section] 

/*if Pj is true then Pi should wait*/ 

      flag[i] = false;  
 [remainder section]  

    } while (True); 

• Still accomplishes mutual 

exclusion 

• But does not accomplish 

progress  

  T0: P0 sets flag [0] = true 

  T1: P1 sets flag [0] = true 

– If both flag[0] and flag[1] 

are true simultaneously 

(which could occur if both 

processes decide to 

access the CS at about 

the same time) then they 

both wait forever. 

21 
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while (true) { 

  flag[0] = TRUE; 

  turn = 1; 

  while ( flag[1] && turn == 1); 

   

  CRITICAL SECTION 

 

  flag[0] = FALSE; 

 

  REMAINDER SECTION 

} 

  

while (true) { 

  flag[1] = TRUE; 

  turn = 0; 

  while ( flag[0] && turn == 0); 

   

  CRITICAL SECTION 

 

  flag[1] = FALSE; 

 

  REMAINDER SECTION 

} 

  

22 
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Algorithm 3 Evaluation  

• Mutual Exclusion is maintained because turn will allow only 

1 process access at a time 

• Progress and bounded-waiting are maintained because a 

process i, is only denied access to the CS while both turn 

<> i (I.e. turn = j) and flag[i] is false. 

• Flag[i] will be true when the process wants to enter the CS 

and if turn <> i, process i must only wait until process j 

terminates with the CS (which must happen in a finite 

amount of time)  
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Lock 

• Suppose we have some sort of implementation of a lock.  

– Lock.Acquire() – wait until lock is free, then grab 

– Lock.Release() – Unlock, waking up anyone waiting 

– These must be atomic operations – if two threads are waiting for 

the lock and both see it’s free, only one succeeds to grab the 

lock 

• Then, our critical section problem is easy: 

  lock.Acquire(); 

Critical section 

  lock.Release(); 

• Once again, section of code between Acquire() and Release() 

called a “Critical Section” 
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Mutual Exclusion: HW Instructions 

• Special machine (atomic) instructions that are available on many 

systems can be used to solve the critical section problem. 

– Performed in a single instruction cycle 

– Not subject to intrusion from other instructions 

– i.e. Reading and writing 

– i.e. Reading and testing 

• These instructions can do two steps indivisibly [atomically]   

– Test_and_set: Test a value; if it is false set it to true, else leave 

it True 

– Exchange: Swap the values of two variables 

• Often in combination with interrupts 

• Sometimes used as basis for OS synchronization mechanisms 
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• The important characteristic of the T&S instruction is that it is 

executed atomically. i.e. it is un-interruptible; no other process can 

access the memory location until the instruction is finished. It is used 

to put a “lock” on a memory word. 

• Implementation of Mutual Exclusion with Test-and-Set 

• A physical entity often called a lock byte must be used to represent 

the resource. 

• There should be a lock byte associated with each shared 

database/device.  

• lock byte = 0 means the resource is available, lock byte = 1 means 

the resource is in use. 

• Before operating on a shared resource, a process must perform the 

following actions: 

1. Examine the value of the lock byte, (Test) 

2. Set the lock byte to 1, (Set). 

3. If the original value was 1, go back to step 1.  

• T & S can be used to implement mutual exclusion as follows: 

Mutual Exclusion: Test & Set Instruction 
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Boolean TestAndSet (Boolean &lock) { 
 Boolean tmp = lock; 
 lock = true; 
 return tmp; } 

When calling TestAndSet(lock) 

– if lock = False before calling TestAndSet 

• It is set to True and False is returned 

– if lock = True before calling TestAndSet 

• It is set to True and True is returned 

Shared data:  
 Boolean lock = False; 

Process Pi do { 

 while (TestAndSet(lock) = True); // recourse is in use (do nothing) 

  -- critical section -- 

  lock = False; // means the resource became available 

  -- remainder section-- 

 } while (1); 

• This algorithm satisfies the mutual exclusion and progress requirements, but not the bounded-
waiting requirement. 

• It may be sufficient for synchronization, but wasteful of processor resources. 

• The blocked process doesn’t really stop executing, instead it continually loops, testing the lock 
byte and waiting for it to change to 0 (Busy Waiting). 

Mutual Exclusion with Test-and-Set 
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Mutual Exclusion with Swap 

(Atomically swap two variables) 
 void Swap(Boolean a, Boolean b) { 

  Boolean temp = a; 

  a = b; 

  b = temp; }; 

• After calling swap, 

– a = original value of b  

– b = original value of a 

• Shared data (initialized to false):  
Boolean lock = false;    /* shared variable - global */ 
//  if lock = 0, door open, if lock = 1, door locked  

• Private data 
Boolean key_i =  true;  
 

• Process Pi 

 do { 

 key_i = true;  /* not needed if swap used after CS exit */ 

  while (key_i = true)   
 Swap(lock, key_i ); 

  critical section  /* remember key_i is now false */ 

 lock = false;  /* can also use: swap(lock, key_i );*/ 

  remainder section 

  } 

• Declaring a global 

Boolean variable lock, 

initialized to false. 

• In addition, each process 

has a local Boolean 

variable key. 

• Mutual Exclusion: Pass if 

key = T or waiting[i] = F 

• Progress achieved 

because exit process 

sends a new process in. 

• Bounded Waiting 

achieved because each 

process wait at most n-1 

times 
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• Advantages  

– Applicable to any number of processes on either a single 

processor or multiple processors sharing main memory.  

– It is simple and therefore easy to verify 

– It can be used to support multiple critical sections 

• Disadvantages 

– An explicit flush of the write to main memory  

– Busy-waiting consumes processor time, while a process is in 

CS, others should loop in the entry sections. 

– Starvation is possible when a process leaves a critical section 

and more than one process is waiting.  Who is next? 

– Deadlock - If a low priority process has the critical region and a 

higher priority process needs it, the higher priority process will 

obtain the processor to wait for the critical region. 

Mutual Exclusion HW/Instructions 
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Busy Waiting/Spin-Lock 

• Main disadvantage of the mutual exclusion solutions shown in the 

previous algorithms is BUSY WAITING or SPIN-LOCK. 

• Busy Waiting 

– Process is continuously looping in the entry section to see if it 

can enter the critical section. 

– Process can do nothing productive until it gets permission to 

enter its critical section – wastes CPU cycles. 

• Most mutual exclusion solutions result in “busy waiting/Spin-lock” 

• To overcome this we can use a wait and signal mechanism. 

• Spin-Lock in multiprocessor system is useful as it minimizes the 

context switch process. 
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We can modify the lock mechanism as follows to avoid busy waiting: 

 (I) Examine the value of the lock byte. 

 (ii) Set the lock byte to 1 

 (iii) If the original value was 1, call Wait (X). 

To unlock: 

 (I) Set lock byte to 0 

 (ii) Call Signal (X). 

Wait and Signal are primitives of the traffic controller. 

• A Wait (X) sets the process’ PCB to the blocked state and links it to the lock byte X. 

• Another process is then selected to run by the scheduler. 

• A Signal (X) checks the blocked list associated with the lock byte X; 

• If there are any processes blocked, waiting for X, one is selected and its PCB is set 

to the ready state. 

• Eventually, the scheduler will select this newly “ awakened” process for execution.  

Mutual Exclusion with Wait and Signal  
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Semaphore 

• Synchronization tool that does not require busy waiting. 

• An abstract data type, non-negative integer 

• Synchronization operations are atomic. 

– Operation P = wait 

– Operation V = signal 

• Use 

– N-process critical section problems 

– Synchronization problems 

• Semaphore S – non-negative integer variable 

 Semaphore S; // initialized to 1 

acquire(S); 

criticalSection(); 

release(S); 

 

 

 

• When one process modifies the semaphore value, no other process can 
simultaneously modify it. 

• The testing of a semaphore value and either increment or decrement it should be 
done atomically.  

SemaphoreP() (wait) 
If sem > 0, then 
decrement sem by 1   
Otherwise “wait” until 
sem > 0 and then 
decrement  

SemaphoreV() (signal) 
Increment sem by 1 
Wake up a thread waiting 
in P() 

P V 
Value= 0 
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Semaphore Implementation 

• Each semaphore has an integer value and a list of associated processes 

• When a process blocks/waits itself on a semaphore, it is added to a queue of 
waiting processes. 

• The signal operation [from other processes] on a semaphore restarts a 

process from the queue and wakes the process up by the wakeup operation. 

 

• Define a semaphore as a record 

  type semaphore = record 

   value: integer 

   L: list of process; 

   end; 

Process 1 Process 2 

Process 3 

Process 4 

Process 5 

P V 
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Critical Section of N Processes 

• We can use semaphores to deal with the n-process critical-section 

problem. 

• N processes share a semaphore mutex; // stands for mutual 

exclusion) initially mutex = 1 

• Process Pi:  

do { 

    wait (mutex); 

        critical section 

      signal (mutex); 

        remainder section 

} while (1); 

• Shows use of semaphore to implement mutual exclusion. 

• Semaphores can be used to solve various synchronization problems, 

Critical section 

Wait (mutex); 

Signal (mutex); 
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Implementation 

• When a process executes wait and finds the semaphore value < 0, it blocks 
itself rather than looping. 

  wait (S):  
  S.value--; 

   if (S.value < 0) {  

      add this process to the list; 
     block; 

   } 

• Signal restarts a process using wakeup which moves a process from the wait 
queue to the ready queue. 

 signal (S):  
  S.value++; 

   if (S.value <= 0) { 

      remove a process P from the list; 
     wakeup(P); 

   } 

• block suspends the process that invokes it. 

• wakeup(P) resumes the execution of a blocked process P. 

• Block and wakeup are provided by the OS as basic system calls. 
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Busy Waiting/Spin-Lock Solution 

• Solution: When a process executes wait and finds the 

semaphore value < 0, it blocks itself rather than looping 

which transfers control to the scheduler that selects another 

process to execute. 
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Semaphore Usage - Example 

P1     P2 

 process 1 statements 
since synch = 0, 

must stay idle until 

signal from P1 

wait(synch); signal(synch); 

received signal from P1 
done executing 

 process 2 statements 

• Goal: Force P2 to execute after P1 

• Using a common semaphore synch to synchronize the operations of 

the two concurrent processes: 

– Wait, signal utilized to delay P2 until P1 is done 

– Synch initialized to 0 
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Dangers of Handling the Critical Section Proble

m 

• Solutions to the critical section problem may lead to:  

– Starvation 

– Deadlock 

• Starvation: A process never gets a resource because the resource is 

allocated to other processes 

– Higher priority 

– Consequence of scheduling algorithm 

• Frequent solution: aging 

– The longer a process waits for a resource, the higher its priority until 

it eventually has the highest priority among the competing processes 

• Deadlock: Two or more processes are waiting indefinitely for an event 

that can be caused by only one of the waiting processes. 
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Deadlock and Starvation with Semaphore 

• Let S and Q be two semaphores initialized to 1 

  P0 P1 

  wait(S); wait(Q); 

  wait(Q); wait(S); 

      

  signal(S); signal(Q); 

  signal(Q) signal(S); 

• P0 is waiting for P1 to execute  signal (Q) 

• P1 is waiting for P0 to execute  signal (S) 

• Both processes are in a deadlock! 

• Starvation: A process may never be removed from the semaphore queue in 

which it is suspended. 

– LIFO queue implementation. 
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Two Types of Semaphores 

• Counting semaphore: Integer value can range over an unrestricted domain. 

i.e the one described before. 

• Binary semaphore: Integer value can range only between 0 and 1. 

– Can be simpler to implement depending on the underlying HW support. 

– Used by 2 processes to ensure only one can enter critical section. 

• We can implement a counting semaphore S with binary semaphores. 
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Implementing Counting Semaphore S  

• Can we implement a counting semaphore with binary semaphores? Yes 

• Data structures: binary-semaphore S1, S2; 

  int C:   

• Initialization: 

  S1 = 1 

  S2 = 0 

  C = initial value of the counting semaphore S 

• wait operation on the counting semaphore S can be implemented as: 
  wait(S1); 
  C--; 
  if (C < 0) { 
    signal(S1); 
    wait(S2); 
  } 
  signal(S1);   
• signal operation on the counting semaphore S can be implemented as: 

  wait(S1); 

  C ++; 

  if (C <= 0) 

   signal(S2); 

  else 

   signal(S1); 
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Incorrect using of Semaphores 

• Although semaphores provide an effective mechanism for process synchronization, 
their incorrect use can still result in timing errors that are difficult to detect. 

• All processes share a semaphore variable mutex, which is initialized to 1. 

• Each process must execute: 

  wait (mutex); before entering 

                           critical-section  

                           signal (mutex); 

• Suppose that a process interchange the order of wait and signal, i.e: 

signal (mutex); 

critical-section 

wait (mutex); 

• Suppose that a process replaces wait with signal, i.e: 

signal (mutex); 

critical-section 

signal (mutex); 

• Suppose that a process omits the wait or the signal or both: in this case either mutual 
exclusion is violated or a deadlock will occur. 

Several processes may be executing 

their CS simultaneously  

Deadlock may occur  
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Process A   Process B   Process C 
 

think();    think();   think(); 

draw_A();   draw_B();   draw_C(); 

   

Example Semaphores 

• Three processes all share a resource on which 

– One draws an A 

– One draws a B 

– One draws a C 

• Implement a form of synchronization so that A B C appears in 

this sequence. 
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Example Semaphores 

think(); 

draw_A(); 

think(); 

draw_B(); 

think(); 

draw_C(); 

A 

C 

B 

? 

No semaphores 
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Example Semaphores 

think(); 

draw_A(); 

think(); 

draw_B(); 

think(); 

draw_C(); 

A 

C 

B 

No semaphores 

Race 

Condition ! 
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Example Semaphores 

think(); 

draw_A(); 

think(); 

draw_B(); 

think(); 

draw_C(); 

A 

C 

B 

A 

No semaphores 
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Example Semaphores 

think(); 

draw_A(); 

think(); 

draw_B(); 

think(); 

draw_C(); 

A 

C 

B 

C 

No semaphores 
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Example Semaphores 

think(); 

draw_A(); 

think(); 

draw_B(); 

think(); 

draw_C(); 

A 

C 

B 

B 

No semaphores 
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Process A  Process B  Process C 
 

think();   b.wait();  c.wait(); 

draw_A();  think();   think(); 

b.signal();  draw_B();  draw_C(); 

  c.signal();   

Example Semaphores 

Semaphores b = 0, c = 0; 
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Example Semaphores 

think(); 

draw_A();  

b.signal(); 

b.wait(); 

think(); 

draw_B(); 

c.signal(); 

c.wait(); 

think(); 

draw_C(); 

A 

C 

B 

Semaphores  

b = 0 

c = 0 
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Example Semaphores 

think(); 

draw_A();  

b.signal(); 

b.wait(); 

think(); 

draw_B(); 

c.signal(); 

c.wait(); 

think(); 

draw_C(); 

A 

C 

B 

Semaphore  

b = -1 

c = -1 
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Example Semaphores 

think(); 

draw_A();  

b.signal(); 

b.wait(); 

think(); 

draw_B(); 

c.signal(); 

c.wait(); 

think(); 

draw_C(); 

A 

C 

B 

A 

Semaphore  

b = -1 

c = -1 
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Example Semaphores 

think(); 

draw_A();  

b.signal(); 

b.wait(); 

think(); 

draw_B(); 

c.signal(); 

c.wait(); 

think(); 

draw_C(); 

A 

C 

B 

Semaphore  

b = 0, 

c = -1; 

53 



Dr. Tarek Helmy, ICS-KFUPM 

Example Semaphores 

think(); 

draw_A();  

b.signal(); 

b.wait(); 

think(); 

draw_B(); 

c.signal(); 

c.wait(); 

think(); 

draw_C(); 

A 

C 

B 

B 

Semaphore  

b = 0 

c = -1 
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Example Semaphores 

think(); 

draw_A();  

b.signal(); 

b.wait(); 

think(); 

draw_B(); 

c.signal(); 

c.wait(); 

think(); 

draw_C(); 

A 

C 

B 

C 

Semaphore  

b = 0, 

c = 0; 
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Classical Problems of Synchronization 

• The following problems are used for testing nearly every newly 

proposed synchronization scheme: 

– Bounded-Buffer Problem 

• Also known as the “consumer-producer” problem 

– Readers and Writers Problem 

• Exclusive access to shared object/DB when modification 

of the object/DB is required 

– Dining-Philosophers Problem: Need to allocate several 

resources among several processes without deadlock and 

starvation. 

56 



Dr. Tarek Helmy, ICS-KFUPM 

Bounded Buffer or “Consumer-Producer”  

• Two processes (one producer, one consumer) share a 
common, fixed-size buffer 

• Producer places information into the buffer 

• Consumer takes it out 

Producer: 

Consumer: 

16 46 27 67 

16 
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Producer-Consumer Problem  

• Why do we need synchronization? 

– The producer wants to place a new item into the buffer, but the buffer is already 

full 

– Consumer wants to consume an item, but the buffer is empty 

• Solution:  

– If the buffer is full the producer goes to sleep,  

• Wakes up when the consumer has emptied one or more items. 

– If buffer is empty, consumer goes to sleep,  

• Wakes up when the producer has produced items 

• Race conditions may occur 

– Wakeup call might be lost 

– Producer will eventually fill buffer and then goes to sleep 

– Consumer will also sleep 

– Both will sleep forever 
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Semaphore Solution 

• The structure of the producer process: 

           while (true)  { 

 

                         //   produce an item 

 

                   wait (empty);  // initially empty = N 

                   wait (mutex);  // intiallly mutex = 1 

 

                         //  add the item to the  buffer 

 

                    signal (mutex);   // currently mutex = 0 

                    signal (full);        // initially full = 0 

           } 
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Semaphore Solution 

• The structure of the consumer process 

 

           while (true) { 

                    wait (full);           // initially full = 0 

                    wait (mutex);      // intiallly mutex = 1 

 

                             //  remove an item from  buffer 

 

                    signal (mutex);   // currently mutex = 0 

                    signal (empty);   // initially empty = N 

 

                            //  consume the removed item 

 

           } 
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Readers-Writers  

• Concurrent processes share a file, record, or other resources 

• Some may read only (readers), some may write (writers) 

• Two concurrent reads have no adverse effects 

• Problems if 

– Concurrent reads and writes 

– Multiple writes 

– May result in starvation, deadlock  

• Race conditions may occur if the resource is modified by two processes 

simultaneously 

• Solution: use semaphores: 

– Semaphore mutex initialized to 1. 

– Semaphore wrt initialized to 1. 

– Integer readcount initialized to 0. 
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Classical Problem 2: The Readers-Writers Problem 

• Multiple readers or a single writer can use DB. 

writer 

writer 

reader 

reader 

reader 

reader 

writer 

writer 

reader 

reader 

reader 

reader 

X 

X X 

   No problem 

  File 

File 

P1 

P2 

P2 

P1 
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Classical Problem 2: The Readers-Writers Problem 

writer 

writer 

reader 

reader 

reader 

reader 

writer 

writer 

reader 

reader 

reader 

reader 

  File 

File 

   Problem 

P1 

P2 P1 

P2 
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Readers-Writers Problem 

• The structure of a writer process 

         

              while (true) { 

                        wait (wrt) ; 

                 

                             //    writing is performed 

 

                        signal (wrt) ; 

             }  
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Readers-Writers Problem 

• The structure of a reader process 

         

              while (true) { 

                       wait (mutex) ; 

                       readcount ++ ; 

                       if (readcount == 1)  wait (wrt) ; 

                       signal (mutex) 

                 

                               // reading is performed 

 

                        wait (mutex) ; 

                        readcount  - - ; 

                        if (readcount  == 0)  signal (wrt) ; 

                        signal (mutex) ; 

              }     
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Dining Philosophers  

• Five philosophers sit at a round table - thinking and eating 

• Each philosopher has one chopstick  

– Five chopsticks total 

• A philosopher needs two chopsticks to eat 

– Philosophers must share chopsticks to eat 

• No interaction occurs while thinking 

• Problem:  

– Starvation  

• A philosopher may never get the two chopsticks necessary to eat 

– Deadlocks 

• Two neighboring philosophers may try to eat at same time 

• Solution:  

– Utilize semaphores to prevent deadlocks and/or starvation 

– Each chopstick is represented by a semaphore 

• Advantages 

–  Guarantees that no two neighbors will attempt to eat at the same time 
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Dining Philosophers Diagram 

P1 P2 

  P5 

 P4 

P3 
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Possible  Solution 

• One semaphore per philosopher 

var chopstick: array [5] of semaphore; / all initialized to 1 

 

repeat 

 wait(chopstick[i]); 

 wait(chopstick[i + 1 mod 5]); // no two neighbors will eat at the same time  

 ... 

 eat 

 ... 

 signal(chopstick[i]); 

 signal(chopstick[i + 1 mod 5]); 

 ... 

 think 

 ... 

until false;  
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Outline of a Correct Solution 

• Deadlock might happen if all philosophers decided to eat at the 

same time. 

• Solution: 

– A philosopher is allowed to pick up chopsticks only if both 

are available. 

– Allow at most four philosopher to be sitting simultaneously at  

the table. 

– This requires careful coordination (e.g. critical sections) 

– Does not automatically resolve starvation 
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Critical Regions 

• To avoid the pervious errors of semaphores, a high-level language 
synchronization construct called critical-region. 

• We assume that the a process consist of some local data, and a sequential 
program that can operate on the data. 

• The local data can be only accessed by only the sequential program 
encapsulated within the same process. (one process can not access the data 
of another process) 

• A shared variable v of type T, is declared as: 

  v: shared T 

• Variable v accessed only inside statement 

  region v when B do S 
 
where B is a Boolean expression. 
 

• While statement S is being executed, no other process can access variable v. 

• Regions referring to the same shared variable exclude each other in time. 

• When a process tries to execute the region statement, the Boolean expression 
B is evaluated.  If B is true, statement S is executed.  If it is false, the process 
is delayed until B becomes true and no other process is in the region 
associated with v. 
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Monitors 

• Another programmer-defined operators construct that allows the safe 
sharing of an abstract data type among concurrent processes. 

• A monitor type consists of declarations of variables whose values define the 
state of an instance of the type and the procedures or functions that 
implement operations on the type. 

• Below is the monitor syntax. 
  monitor monitor-name 

   { shared variable declarations 

    procedure body P1 (…) { 

     . . . 

    } 

    procedure body P2 (…) { 

     . . . 

    }  

    procedure body Pn (…) { 

      . . . 

    }     

    { 

     initialization code 

    } 

   } 

72 



Dr. Tarek Helmy, ICS-KFUPM 

Monitor Diagram 

shared data 

  initialization 

       code 

... 

  operations 

entry queue 
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A Problem with Monitors 

• To allow a process to block themselves when they cannot proceed 

within the monitor, a condition variable must be declared, as 

  condition x, y; 

• The only operations that can be invoked on a condition variable is: 

wait and signal. 

 

– x.wait  suspends the process until it is invoked by another 

process, and  

– x.signal releases exactly one process from the affiliated waiting 

queue 

• Only usable in a few programming languages 

• Solves mutual exclusion problem only for CPUs that all have 

access to common memory; not designed for distributed systems 
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Monitor Diagram 

shared data 

  initialization 

       code 

... 

operations 

entry queue 

x 
y 
z 

condition variable queues 
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Solaris 2 Synchronization 

• Implements a variety of locks to support multitasking, 
multithreading (including real-time threads), and 
multiprocessing. 
 

• Uses adaptive mutexes for efficiency when protecting data from 
short code segments. 
 

• Uses condition variables and readers-writers locks when longer 
sections of code need access to data.  
 

• Uses turnstiles to order the list of threads waiting to acquire 
either an adaptive mutex or reader-writer lock. 
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Windows Synchronization 

• Uses interrupt masks to protect access to global resources on 
uni-processor systems. 
 

• Uses spinlocks on multiprocessor systems. 
 

• Also provides dispatcher objects which may act as wither 
mutexes and semaphores. 
 

• Dispatcher objects may also provide events. An event acts 
much like a condition variable. 
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The End!! 

Thank you 

Any Questions? 
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