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S Ch: 5 Process Scheduling

* Schedulers Overview
« Scheduler, Dispatcher and Swapper modules in the OS
« Types of Scheduling Algorithms
— Preemptive, and Non-preemptive
- Evaluation Criteria of Scheduling Algorithms
*  Scheduling Algorithms
— First-Come, First-Served (FCFS)
— Shortest Job First (SJF)
— Shortest Remaining Time First (SRTF)
— Process Burst Length Prediction
— Round Robin
— Priority-Based
— Multilevel Queue
— Multilevel Feedback Queue
« Scheduling Algorithms Evaluation

— Deterministic modeling
— Queuing models
— Simulations

— Implementation
« Scheduling Polices in Different OS
* Multiprocessor Systems: Just Introduction
» Scheduling of Multiprocessors systems
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Ch: 5 (Process Scheduling) Objectives

BSOS a0

* Recognize the importance of CPU scheduling for the operation

of computer systems.

FoLr L@@

« Understand the decision policy of different CPU scheduling

algorithms.
« Know about the strengths and weaknesses of each algorithm.

« Obtain the knowledge to evaluate and select the appropriate

scheduling algorithm for different computing environments.
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Schedulers Overview

BSOS a0

* Processes entering the system are put into a job queue.
* Processes ready to be executed are kept in the ready queue.
* Processes waiting for a particular device are placed in one of the I/O queues.

! T

Long-term Short-term Scheduler
Scheduler
» Scheduler: a module decides which process will be dispatched to the CPU.

« Dispatcher: a module gives control of the CPU to the process selected by the short-term
scheduler.

« Swapper - manages transfer of processes between main memory and virtual memory
(medium-term scheduler)

* Dispatch/Context latency: Time it takes for the OS to stop one running process and to start
running another one.

* In the Context/Dispatch time, the OS will:
* Remove the “old” process from the CPU by the dispatcher.

« Select the next process by the scheduler.

» Allocate the “new” process to the CPU by the dispatcher.
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Time Quantum/Burst Time

BSOS a0

 How does the OS interleave execution of many processes on the CPU?

 Answer: Sharing of the CPU time amonq the processes
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« Time Quantum/Burst Time: Amount of CPU time given to each process.

Q: What happens if the quantum time is too short?
A: Too much overhead for context switching.

Q: What if the time quantum time is too long?

A: Poor response times, some processes will starve

A Context Switch occurs when a process exchange is made between the ready

h >
Ee—
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and run states.
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p—— During the Context Switch from Process A to B

1. Hardware:

«  Sets the PC register with the address of the Interrupt Handler (IH),
which is an address in the interrupt vector of OS kernel.

«  Setting the mode bit to switch from user mode to kernel mode.

2. OS Kernel:
« Copies A’s state from CPU registers to A's PCB.
«  Sets A's state to Ready or Blocked.
* Inserts a pointer of A’'s PCB on Ready-Queue or I/O-Queue.

FoLr L@@

3. Scheduler selects a process B to run, based on its scheduling policy.
4. OS Kernel:
« Sets B’s state to Running,

« Copies B’s state from B’s PCB to CPU registers.

. Kernel transfers control to B and switches from kernel mode back to
user mode.
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R Assumptions for Process Scheduling
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Basic assumptions behind most scheduling algorithms:

In a single processor system, only one process can be in running state at a time

In a multi-core/multi-processor system, many processes can bein running state at a
time.

In this course we are going to take care scheduling into a single processor.
There is a pool of ready processes which compete for the CPU/CPUs or resources.

The processes are either dependent/independent.

In this course we are going to take care scheduling of independent processes.

The job of the scheduler is to distribute the CPU time among different ready processes
"fairly" (according to some definition of fairness) and in a way that optimizes some
performance criteria.

— i.e. to maximum CPU utilization , concurrent execution is recommended.
Key to the success of multiprocessing scheduling:
— Process execution consists of cycles of CPU execution and cycles of 1/0 waiting.

CPU-I/O bound processes:
— An I/O-bound process will have many short CPU bursts.
— A CPU-bound process will have many long CPU bursts.
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Sequence of CPU and 1/O Bursts

L R RSN
|
W < Aprocess will run for a while (CPU burst), perform some 10 (I/O burst), then
: run for a while again (next CPU burst) and so on.
:  The frequency of I/O and CPU operations depend on the process type.
| :
load A -
add A } CPU - CPU Burst
read from file Wait for 1/O 1 1/O Burst
Increment A } CPU CPU Burst
write to file Wait for 11O 1/0 Burst
load A CPU CPU Burst
add A
read from file Wait for /O /O Burst
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e p—— Short-Term (CPU) Scheduler

« CPU Scheduler: is a module/process of the operating system

— lItself is a process, responsible for the selection of the next
process to be executed.

FoLr L@@

* The selection is done according to a scheduling algorithm

— The scheduler decision policy should be simple

— The scheduler uses resources of the computer system,
- In particular CPU time, memory

— The scheduler should not consume too much CPU time

- Otherwise the overhead is too high
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mwoaaanw | Preemptive vs. Non-Preemptive Scheduler

Scheduling is Preemptive:

« If the CPU can be taken away from a process during execution due to:
* Occurrence of interrupts
 Arrival of higher priority process
« Achange of status
* Time limit

* Prevents a process from using the CPU for too long

* May lead to race conditions which will be solved by using process synchronization

» Supported by Windows, UNIX, Linux, Mac-OS 8 for the PowerPC platform
Scheduling is hon-Preemptive:
 If, once the CPU has been allocated to a process, the process can keep the CPU
until:
+ It releases the CPU, either by terminating or switching to the waiting state.

« Supported by old Microsoft Windows and Mac. OS.
» Simple, and easy to implement
* May lead to starvation

« Not suited for multi-user systems as it decreases the responsiveness.
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WG aEs Categories of Processes

« Batch process

— Users are not waiting at their terminals for a response time.
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— Should scheduling be preemptive or non-Preemptive?

» Interactive process
— Environment has interactive users

— Should scheduling be preemptive or non-Preemptive?

 Real Time process
— Processes may have real-time constraints

— Should scheduling be preemptive or non-Preemptive?

FFdfLo LD
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CPU or Short-Term Scheduler
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. Selects one of the processes in the ready
gueue to be allocated to the CPU.

. Scheduling decisions may take place
when a process: »
Admit
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1. Switches from running to waiting —
state. ex. I/O reguest. Dispatch
2. Switches from running to ready state. Ready
ex. Due to interrupt, time quantum p—
expiring. Event

occurs Event

wait

3.  Switches from waiting to ready. ex.
Completion of 1/O.

4.  Switches from new to ready.
5. Terminates.

—  Scheduling under 1 and 5is non-
preemptive while 2, 3 and 4 are
preemptive.
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Evaluation Criteria of Scheduling Algorithms
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Fairness
— Is the algorithm fairly share the CPU time among processes?
CPU utilization: The fraction of time a CPU is executing processes. (ratio of in-use

time/total observation time). Note that CPU might be busy but in context switching.

Resources utilization: Efficient utilization of all resources, are all recourses used?
Throughput: # of processes that complete their execution per a time unit.

Turnaround Time: Elapsed time from the submission/arrival of a process to its
completion.

Waiting Time: Amount of time a process has been waiting in the ready queue,
not in the waiting 1/0 queues, may consist of several separate periods.

Response Time (interactive users): Amount of time it takes from the submission
until the first response is given to the process, not output (for time-sharing
environment).

Context Switches: # of context switches: Indication for the amount of overhead
Complexity of the scheduling algorithm
— Indication of the time needed to take a decision and select the next process.

— It also indicates the amount of memory going to be used by the algorithm.
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Average Waiting, Turn around and Response Time

Waiting Time: how much time the process spends on the ready queue
waiting to execute (this does not include time the process spends doing or
waiting for 1/0).

— Ty : Amount of time a process has been waiting in the ready queue, it
can be accumulated times, i.e. in round robin scheduling policy.

Waiting Time starts when the process enters the ready queue (not when it
enters the system).
Average Waiting Time (AWT of n processes) = XT,,/ n
Response Time (of one process):
— Tr= Tstartouse cru = T Arrive
Average Response Time (ART of n processes) = XTg/n
Turnaround Time (of one process)
- T;=T T

Finish the process — ' Arrive

Average Turnaround Time (ATT of n processes) = T,/ n
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e Ideal Process Scheduling Algorithm

 Should Maximize

— CPU and resources utilization

FoLr L@@

« Keep the CPU and resources busy all the time.
— Throughput
 # processes completed within a time unit.
« Should Minimize
— Waiting Time:
* Minimizes it leads to minimizing the Turnaround time.
— Turnaround Time
* Minimizes it leads to maximizing the throughput.

— Response Time

* Minimizes it leads to maximizing the user’s satisfaction.
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Factors in Scheduling
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« The scheduler determines the order in which processes are executed

« Factors affect the scheduler decision and implementation:
— Which policy used to select a process? (will affect the response time)
— How long may the process keep the CPU? (time burst/quantum)

— How are conflicting requests resolved? (i.e. two processes have the
same priority or same arrival time)

— Is the process CPU- or I/O-bound?

— Is the process interactive or batch?

— Execution time used so far (historical time bursts)

— Execution time required to complete (future time bursts)

— Preemption frequency (how many time a process has been preempted?)

— Page fault frequency (how many time a process has been swapped out
and in?)

— Processes dependency

FoLr L@@

— etc..
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First-Come, First-Served (FCFS) Scheduling Policy

» Ready queue is implemented as a FIFO queue.

Example Process Burst Time
P1 24
P2 3
P3 3

« Arrival order;: P1, P2, P3
— The Gantt Chart for the schedule is:

— Waiting time for P1 =0; P2 = 24; P3 =27

o TW: TStart to use CPU T Arrive
 Average waiting time: (0 + 24 + 27)/3 =17

» The process that arrives first is allocated the CPU first.

» Do you think changing the order of process arrival will affect
the average waiting time and the throughput?

17
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FCFS Scheduling Policy (Cont.)

: S aaaanh

3  |f the arrival order is: P2,P3,P1.

0 — The Gantt chart for the schedule is: P | BT

: P2 | 3
P3 3
P1 24

— Waiting time for P1 =6; P2 =0; P3=3

o TW: TStart touse CPU T Arrive
 Average waiting time: (6 +0+ 3)/3=3
« Much better than previous case.

« At time slot 6, the throughput will be 2 but in the
previous order, the throughput was 0, means more
productive than the previous order.
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FCFS Policy Example 2

L R RSN

|

g Process # Arrival Time Burst Length Priority

3 P1 0 6 1
P2 0 15 1

4 P3 0 3 1

od P4 0 4 1

0 P5 0 2 1

|

« Since the arrival time of all processes is 0 and all have the same priority, the order
of processes will be used to resolve the confliction.
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FCFS Policy Example 2

Process #

P1
P2
P3
P4
PS5

Arrival Time Burst Length
0 6
0 15
0 3
0 4
0 2

Priority

PRPRPP

FoLr L@@

« Since the arrival time of all processes is 0 and all have the same priority, the order
of processes will be used to resolve the confliction.

Dr. Tarek Helmy, ICS-KFUPM
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FCFS Policy Example 2
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Process # Arrival Time Burst Length Priority

P1 6
P2 15
P3 3
P4 4
P5 2

oNoNoNeoNe
RPRRRR

FoLr L@@

« Since the arrival time of all processes is 0 and all have the same priority, the order
of processes will be used to resolve the confliction.
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FCFS Policy Example 2
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Process # Arrival Time Burst Length Priority

P1 6
P2 15
P3 3
P4 4
P5 2

00000
PRRPR
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« Since the arrival time of all processes is 0 and all have the same priority, the order
of processes will be used to resolve the confliction.
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FCFS Policy Example 2

Process #

P1
P2
P3
P4
P5

Arrival Time Burst Length

6
15
3
4
2

oNeololNelNe)

Priority
1

1
1
1
1

FoLr L@@

« Since the arrival time of all processes is 0 and all have the same priority, the order
of processes will be used to resolve the confliction.

Dr. Tarek Helmy, ICS-KFUPM
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FCFS Policy Example 2

Process #

P1
P2
P3
P4
P5

Arrival Time Burst Length

6
15
3
4
2

O000O0

Priority

PRRRR

FoLr L@@

« Since the arrival time of all processes is 0 and all have the same priority, the order
of processes will be used to resolve the confliction.

Dr. Tarek Helmy, ICS-KFUPM
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FCFES Policy Example 2

Process #

P1
P2
P3
P4
P5

Arrival Time

oNeolNoNelNe)

Burst Length

Priority

PR RRR

FoLr L@@

« Since the arrival time of all processes is 0 and all have the same priority, the order
of processes will be used to resolve the confliction.

———

0 10 15 20

Process # Waiting Time Response Turnaround #of Context
Time Time Switches

P1 0 0 6 1

P2 6 6 21 1

P3 21 21 24 1

P4 24 24 28 1

P5 28 28 30 1

Average 79/5=15.8 79/5=15.8 21.8 1

Dr. Tarek Helmy, ICS-KFUPM
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e —— FCFS Policy Properties

* Very simple, easy to implement

— Uses a FIFO queue

FoLr L@@

— Very quick selection of the next process

- Constant time, independent of the number of processes in the

ready queue.
* Non-preemptive
« Often long average waiting and response times.
* Not suitable for multi-user systems!, Why?

e Since serving the short jobs first will improve the average waiting time

which in fact will improve the throughput.

 Why do not we sort the jobs based on their burst lengths and then serve

the shortest job first.

FFdfLo LD
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Shortest-Job-First (SJF) Policy

FoLr L@@

first.

Dr. Tarek Helmy, ICS-KFUPM

« Shortest Job First (SJF) or Shortest Job Next (SJN) or Shortest Process
Next (SPN): Selects the waiting process with the smallest execution/burst
time to execute next.

 How do we know the burst length of each process?
« Predict for each process the length of CPU time it needs. One of its limitations.
« Use these predicted lengths to schedule the process with the shortest time

« Shortest-Job-First (SJF):

— It could be Non-Preemptive: once CPU is given to the process, it cannot
be preempted until the processes completes its burst time.

— Do scheduling when a process finishes;
— Assume arrival time O for all processes!, practically is not.

— Assume the same priorities for all processes!, practically is not.

— Different (expected) burst lengths, how about if two have the same length.

— It could be Preemptive: upon arrival of a shorter process than the
running one, the CPU can be preempted and given to another process.

« SJFis optimal: it gives minimum average waiting time for a given set of
processes. Let us verify that.

Baagaa30%
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SJF Policy Example

BRSaaaanm

. Process # Arrival Time Burst Length Priority
=

5 P1 0 6 1

5 P2 0 15 1

. P3 0 3 1

N P4 0 4 1

- P5 0 2 1

TT=T T

WT= TStart to use CPU — T

Finish the process ~— ' Arrive

Arrive

Dr. Tarek Helmy, ICS-KFUPM 28 WmEaaaaum
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SJF Policy Example

LR R RS

|

n Process # Arrival Time Burst Length Priority

| P1 0 6 1

Jd P2 0 15 1

Jd P3 0 3 1

o P4 0 4 1

W P5 0 2 1
WT= TStart to use CPU — TArrive TT :TFinish the process ~ T Arrive

Dr. Tarek Helmy, ICS-KFUPM 29 WmOaaaaum
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SJF Policy Example

BRGS0 h

L

N Process # Arrival Time Burst Length Priority

o P1 0 6 1

Jd P2 0 15 1

d P3 0 3 1

u P4 0 4 1

L] P5 0 2 1
WT= TStart to use CPU — TArrive TT :TFinish the process ~ T Arrive

Dr. Tarek Helmy, ICS-KFUPM 30 mEaaaamw
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SJF Policy Example

L R RSN

|

L Process # Arrival Time Burst Length Priority

. P1 0 6 1

. P2 0 15 1

. P3 0 3 1

] P4 0 4 1

| P5 0 2 1
WT= TStart to use CPU — TArrive TT :TFinish the process ~ T Arrive
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SJF Policy Example

LR R RS

|

o Process # Arrival Time Burst Length Priority

o P1 0 6 1

. | P2 0 15 1

| P3 0 3 1

a P4 0 4 1

L | P5 0 2 1
WT= TStart to use CPU — TArrive TT :TFinish the process ~ T Arrive
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SJF Policy Example

P1
P2
P3
P4
P5

FoLr L@@

Process # Arrival Time

0

0
0
0
0

Burst Length Priority
6 1
15 1
3 1
4 1
2 1

WT= TStart touse CPU —

Arrlve

TT :TFinish the process™ T Arrive

o —

Process # Waiting Time

15

Response

20 25

Turnaround #of Context
Time Switches

P1 9 15 1
P2 15 30 1
P3 2 6 1
P4 5 9 1
P5 0 2 1
Average 31/5=6.2 31/5=6.2 62/5=12.4 1

Dr. Tarek Helmy, ICS-KFUPM
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SJF: Different Arrival Times
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» Slight modification

— Different arrival times for the processes

FoLr L@@

— Same priorities
— Different (predicted) burst lengths

— The processes waiting in the ready queue are added to the
diagram (select the shortest among processes waiting in the

ready queue). Non-arrived processes should not be counted

when deciding the shortest one.

FFdfLo LD
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SJF Example 1: Different Arrival Times
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Process Arrival Time Burst Time

P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

* TW: TStart touse CPU T Arrive
AWT =( (0-0) + (8-2) + (7-4) + (12-5))/4 = 4

° TT - TFinish the job T Arrive
ATT =((7-0) + (12-2) + (8-4) + (16-5))/4=8

arrives arrives arrives

P2 P3 P4

Dr. Tarek Helmy, ICS-KFUPM
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SJF Example 2: Different Arrival Times

Process #

P1
P2
P3
P4
PS5

FoLr L@@

Arrival Time Burst Length Priority
0 6 1
3 15 1
5 3 1
8 4 1
14 2 1

.

ready queue at time O

Dr. Tarek Helmy, ICS-KFUPM 36
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SJF Example 2: Different Arrival Times

L R RSN

: Process # Arrival Time Burst Length Priority
a Pl 0 6 1

1 P2 3 15 1

3 P3 5 3 1

Ny P4 8 4 1

Ny P5 14 2 1

P2: 15

ready queue at time 3

.
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SJF Example 2: Different Arrival Times

.

L R RSN

: Process # Arrival Time Burst Length Priority
a Pl 0 6 1
1 P2 3 15 1
3 P3 5 3 1
r P4 8 4 1
Ny P5 14 2 1

P2: 15

P2 15 [
4

ready queue at time 5

Dr. Tarek Helmy, ICS-KFUPM 38
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SJF Example 2: Different Arrival Times

Process #

P1
P2
P3
P4
PS5

FoLr L@@

Arrival Time Burst Length Priority
0 6 1
3 15 1
5 3 1
8 4 1
14 2 1

Dr. Tarek Helmy, ICS-KFUPM 39
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SJF Example 2: Different Arrival Times

L R RSN

: Process # Arrival Time Burst Length Priority
a Pl 0 6 1
1 P2 3 15 1
3 P3 5 3 1
r P4 8 4 1
Ny P5 14 2 1

P2:15 || P2:15

P2: 15 -- P2: 15

%H SR

Dr. Tarek Helmy, ICS-KFUPM 40
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SJF Example 2: Different Arrival Times

L R RSN

: Process # Arrival Time Burst Length Priority
a Pl 0 6 1
1 P2 3 15 1
3 P3 5 3 1
r P4 8 4 1
Ny P5 14 2 1

.

P2:15 || P2:15

r2: 15 [ R 725 | [P

“ f *ﬁ

Dr. Tarek Helmy, ICS-KFUPM 41
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SJF Example 2: Different Arrival Times

L R RSN

: Process # Arrival Time Burst Length Priority
a Pl 0 6 1
1 P2 3 15 1
3 P3 5 3 1
r P4 8 4 1
Ny P5 14 2 1

P2:15 || P2:15

r2: 15 [ R 725 | [P

||||||||HI HEERERER

Process # Waiting Time Response Turnaround

Time Time

#of Context
Switches

P1 0) 6 1
P2 13-3 =10 13-3 =10 28-3 =25 1
P3 6-5=1 6-5=1 9-5=4 1
P4 9-8=1 9-8=1 13-8 =5 1
P5 28-14 = 14 28-14 = 14 30-14 = 16 1
Average 26/5=5.2 26/5 =5.2 50/5 =10 1

Dr. Tarek Helmy, ICS-KFUPM 42
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SJF Optimality

long

FoLr L@@

short

Dr. Tarek Helmy, ICS-KFUPM

short

long

«  This graph Proofs that the SJF algorithms is optimal
«  Better responsiveness
«  Minimum average waiting time
« Improves the throughput

« What s the difficulties of theses algorithms?

43
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SJF Policy Properties
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Much better average waiting time for processes when we use SJF
than FCFS.

— Optimal with respect to the average waiting time.
Non-preemptive

Relies on knowing the length of the CPU bursts

— In general, it is difficult to impossible to get it accurately.
Implementation is more complex than FCFS
Time of selecting a process is variant.

— Linear w.r.t. number of processes in the ready queue
Impractical due to burst length prediction problem
Starvation is possible

— If new, short processes keep on arriving, long processes may
never be served.

How do we overcome this problem?
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mn g aay | Ohortest-Remaining-Time-First (SRTF) Policy

Shortest-Remaining-Time-First (SRTF)

— Preemptive: If a new process arrives with burst length less than
remaining time of current executing process, preempt and make a
context switch.

— Remaining time: The process burst length - the time the CPU has already
spent serving the process.

A scheduling decision must be made when
— A process is done with its CPU burst
— A new process arrives in the ready queue
« Arrival time of new processes is important
« Itis important to keep track of the processes currently in the ready queue
— The policy used here: preempted processes go to the end of the ready

queue.
— It may depend on another policy for implementation.
Process  Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4
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Shortest-Remaining-Time-First

FoLr L@@

7
P2 arrives

RT:

P3 arrives
RT:

P1:7-2=5
P2: 4

P1:5
P2: 4-2=2
P3:1

P4 arrives
(P3 finishes)
RT:

P2 finishes
RT:

Dr. Tarek Helmy, ICS-KFUPM

P1:5
P2: 2
P4: 4

P1:5
P4: 4

« AWT =X (TStart touse CPU T Arrive )/n:(g +1+0 +2)/4 =3
* ATT =Z (Trinishtrejob— T Arrive)/N=(16+5+1+6)/4 =7
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SRTF Policy Example

L R RSN

|

L Process # Arrival Time Burst Length Priority
d Pl 0 6 1

d P2 3 15 1

d P3 9 3 1

a P4 14 4 1

| P5 17 2 1
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SRTF Policy Example

L R RSN

|

L Process # Arrival Time Burst Length Priority
d Pl 0 6 1

d P2 3 15 1

d P3 9 3 1

a P4 14 4 1

| P5 17 2 1
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SRTF Policy Example

L R RSN

|

L Process # Arrival Time Burst Length Priority
d Pl 0 6 1
d P2 3 15 1
d P3 9 3 1
a P4 14 4 1
| P5 17 2 1

Dr. Tarek Helmy, ICS-KFUPM
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R p—— SRTF Policy Example

L

|

L Process # Arrival Time Burst Length Priority
d Pl 0 6 1
d P2 3 15 1
d P3 9 3 1
a P4 14 4 1
| P5 17 2 1
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SRTF Policy Example

L R RSN

|

L Process # Arrival Time Burst Length Priority
d Pl 0 6 1

d P2 3 15 1

d P3 9 3 1

a P4 14 4 1

| P5 17 2 1
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SRTF Policy Example

L R RSN

|

L Process # Arrival Time Burst Length Priority
d Pl 0 6 1

d P2 3 15 1

d P3 9 3 1

a P4 14 4 1

| P5 17 2 1
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SRTF Policy Example

L R RSN

|

L Process # Arrival Time Burst Length Priority

d Pl 0 6 1

d P2 3 15 1

d P3 9 1

a P4 14 1

| P5 17 1
P2: 12

P2: 12

FFdfLo LD
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SRTF Policy Example

L R RSN

|

L Process # Arrival Time Burst Length Priority
d Pl 0

. P2 3

d P3 9

a P4 14

| P5 17
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SRTF Policy Example

L R RSN

|

L Process # Arrival Time Burst Length Priority
d Pl 0

. P2 3

d P3 9

a P4 14

| P5 17
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. SRTF Policy Example

FoLr L@@

Process # Arrival Time Burst Length Priority

Pracess # H aiting Time Response Turnareounnd #of Cantext

Time Time Switches N
P1 0 0 & 1(2)

P2 (6-37+ (12-9) + (6-3)= 3 (20 -3)=27 3 a
(20-14)y = 12 . |
P3 0 0 (12-9)=13 1 Jd
P4 0 0 (18-147 = 4 1(2) a
P5 (18-17y =1 (18-17y =1 (20-17) =3 1 o
Av erage 13/5 =26 13/5 = 2.6 36/5="7.2 7 -
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SRTF Policy Properties

BSOS a0

Good response time for short processes

— Attractive for multi-user systems

Preemptive version of the SJF algorithm

— Higher overhead (context switches)

Starvation possible

Impractical due to burst length prediction problem

FoLr L@@
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FCFS, SJF, SRTF Policies Comparison

RS aaaah
« With the same set of processes, we can compare the performance of the
FCFS, SJF and SRTF.
Process # Arrival Time Burst Length Priority
P1 0 6 1
P2 3 15 1
P3 9 3 1
P4 14 4 1
P5 17 2 1
AWT 15.8 6.2 5.2 2.6
ART 15.8 6.2 5.2 2.6
ATT 21.8 12.4 10 7.2

FFdfLo LD



Burst Length Prediction
BSaaaTh

« Practically, the CPU burst length of a process is not known and needs
to be predicted/estimated.

— Algorithms such as SJF, SRTF in their pure form can’t be used in
practical systems unless there is an algorithm to predict the next
process burst length. How?

« The past can be a good predictor of the future, moreover

FoLr L@@

— Recent bursts might be given more importance than older bursts.

« The CPU burst length can be estimated based on the previous CPU
bursts of the process.

« This requires analysis of the code to be executed while the
scheduling decision is made.

« That means, additional overhead during the scheduling decision

— Time to estimate next CPU burst of the process and calculate the remaining time.

— Memory space to keep values of recent CPU burst lengths.

FFdfLo LD
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Burst Length Prediction

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM

« A generic formula to estimate the length of the next CPU burst from the
lengths of previous ones is:

c Eiza*Aix+ (1-a) *Ei1
« E;: estimated burst length of a process at time i
« Ai.1.actual burst length of a process at time (i -1)
« Ei.1: previously estimated burst of a process at time (i -1)
« o factor to balance the importance of recent and not so recent bursts
— Ifa=0thenEi=Ei1
— Ifa=1lthenEi=Ai1
« Attime t; we estimate the length of the next CPU burst based on information
we have about previous bursts according to:
Eiza*Ai1 + (1- (X)*Ei-l
— We have to select an initial value for o (here 0.75)

— For the first burst Ag, we randomly set it, after that we use the measured
time for the previous burst A 1.

— The measured burst time may be significantly different from the estimate.

FFdfLo LD
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Burst Length Prediction: Example

Dr. Tarek Helmy, ICS-KFUPM

:“JJJ“
- Ei=a*Aii+ (1-a)*Ei
.
s Time Estimate Actual Burst
(say 10)
To 0.75*10+ 0.25*0 =75 6
T1 0.75*6+ 0.25*7.5 = 6.37/5 3
T 0.75*3+ 0.25*6.375=3.85 /
T3 0.75*7+ 025*3.85= 6.2 12

T4 0.75*12+ 0.25*6.2= 9.55

61
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Example of Predicting CPU Bursts

Dr. Tarek Helmy, ICS-KFUPM

12 12 .12

62

b

UL LR
L
a
P Actual
. 12
. = 10k
g o o Predicted
1% 6
s L &
2
] | l l l | I
time—"
Actual CPU Burst A, , T 411 (15 11 i
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e Round Robin (RR) Policy

* Itis a preemptive scheduling algorithm.

« Each process takes an equal or un-equal share
of CPU time (time quantum) in turn. After this
time has elapsed, the process is preempted and
added to the end of the ready queue.

 If there are n processes in the ready queue and
the time quantum is g, then each process gets
1/n of the CPU time in chunks of at most g time
units at once. No process waits more than (n-1)q
time units.

 Performance

— q time large = FCFS (most of the processes
will finish in that quantum time)

— q time small = more context switches,
overhead is too high and throughput is low.

— ( time must be large with respect to context
switch, otherwise overhead is too high.

FoLr L@@

« The average waiting time of RR is often long, but
The average response time is often less, good for multi/user /processing.

FFdfLo LD
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Example of Round Robin Policy

BRGS0 n
L]
u Process Burst-time
ol
. P, 3 Set quantum at 4 milliseconds
" oop 3
3

* Inthe RR policy, the scheduling decision is made when:
— A process is done
— Expiration of the quantum time

* RR causes higher average turnaround time than SJF,
« Butimproves the average response time and fairness (starvation free)

FFdfLo LD
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Smaller Time Quantum Increases Context Switches

pracass lme =10

FoLr L@@

quaniurm

12

conlext
awitches

b

Dr. Tarek Helmy, ICS-KFUPM
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BSOS a0

RR Policy Example: Preemptive

P1
P2
P3

FoLr L@@

Process # Arrival Time Burst Length Priority

(9]
O U V) G —

Time quantum:
3 units

Dr. Tarek Helmy, ICS-KFUPM
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RR Policy Example: Preemptive

L L R RERE R

. Process # Arrival Time Burst Length Priority

=

. P1 0 6 1 . _
P2 3 15 1 Time quantum:

! P3 9 3 1 3 units

3 P4 14 4 1

» P5 17 2 1

i
[
0

Dr. Tarek Helmy, ICS-KFUPM 67 Ba g aaun

FFdfLo LD



RR Policy Example: Preemptive

BSOS a0

Process # Arrival Time Burst Length Priority

1
P2 3 15 1 Time quantum:
P3 9 3 1 i
P4 14 4 1 3 units
P5 17 2 1

FoLr L@@

B2 - -
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RR Policy Example: Preemptive

Dr. Tarek Helmy, ICS-KFUPM

69

L L R RS RE R
: Process # Arrival Time Burst Length Priority
6 1
4 P2 3 15 1 Time quantum:;
o P3 9 3 1 ;
. P4 14 4 1 3 units
3 PS5 17 2 1
L
P2: 15 P2:12
P2
||
0 5 10 15 20 25
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RR Policy Example: Preemptive

L L R RERE R

. Process # Arrival Time Burst Length Priority

T P1 0 6 1

4 P2 3 15 1 Time quantum:;

4 s y y ! 3 units

a ps 17 > i

PS5
a
L
B2 - - P2: 9
P2: 15 P2: 12
P2
- l
0 5 10 15 20 25

L
a
o
<
o
o
L
L
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RR Policy Example

: Preemptive

L L R RS RE R
: Process # Arrival Time Burst Length Priority

P1 0 6 1 _
4 P2 3 15 1 Time quantum:;
J P3 9 3 1 3 unit

P4 14 4 1 units
4 P5 17 2 1
a
L

0 10 15 20 25

Dr. Tarek Helmy, ICS-KFUPM
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RR Policy Example: Preemptive

L L R RS RE R
. Process # Arrival Time Burst Length Priority
o P1 0 6 1
o P2 3 15 1 ; .
- P3 9 3 1 Time qua_ntum.
P4 14 4 1 3 units
o PS5 17 2 1
a
25

Dr. Tarek Helmy, ICS-KFUPM
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RR Policy Example

L

. Arrival Time Burst Length Priority

d P1 0 6 1

: 03 5 2 i Time quantum:

P4 14 4 1 i

. bs - 3 : 3 units

a

L

0 5 10 15 20 25

W
a
o
<
o
o
L
L
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RR Policy Example

BRGS0 %m
: Arrival Time Burst Length Priority
4 o3 5 Time quantum:
J -
P4 14 3 units
o
a
L |

FFdfLo LD
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RR Policy Example

L L R RERE R
W Process # Arrival Time Burst Length Priority
o P1 0 6 1
d P2 3 15 1
1 P3 9 3 1
P4 14 4 1
e P5 17 2 1
a
L

Time quantum:
3 units

Dr. Tarek Helmy, ICS-KFUPM 75
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RR Policy Example

L L R RS RE R

: Arrival Time Burst Length Priority

d P2 3 15 1 : .

- P3 5 3 1 Time qua_ntum.
P4 14 4 1 3 units

o P5 17 2

a

L

Dr. Tarek Helmy, ICS-KFUPM
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RR Policy Example

Process #

P1
P2
P3
P4

Arrival Time

Burst Length

Priority
1

FoLr L@@

Time quantum:

Tesponse
Time

HPRAFroH K
Time

3
P 5- (30 -3)= 27
187+ (27- 2
F3 (12-2) =3 (12-2)=3 (15-9) =
P4 (18-14)+ (26-21) =2 (18-14) =4 (27-14) =
P5 (21-17)= 4 (21-17) =4 (23-17T)= 86
Average 28/5 =56 11/5 =22 52/5 =104 11/5 =2.2

Dr. Tarek Helmy, ICS-KFUPM
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Round Robin Policy Characteristics

BSOS a0

It can be preemptive or non-preemptive. How?
* Used in time sharing environments, WHY?

FoLr L@@
[ ]

« Sensitive to the length of the time quantum [Research area!] due to
the overhead of context switch.

« How to predict the best unit of CPU time to be given to the
processes?

« |t favors CPU-bound processes than I/O-bound processes.
« |/O-bound processes are not favored [Research area!]

— Every time an I/O request occurs the process has to go back to
the end of the ready queue !!!

— Variation:

- Using a separate queue with higher priorities for processes
“returning” from 1/O activities.

FFdfLo LD
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EL TS uT. Ch: 5 Process Scheduling

* Schedulers overview (i.e. long, short, medium term schedulers)
« Scheduler, Dispatcher and Swapper modules in the OS
*  Types of Scheduling Algorithms
— Preemptive, and Non-preemptive
«  Which of the Process states transition are Preemptive and which are Non-preemptive.
« Categories of Processes (i.e. batch, interactive, real-time)

« Evaluation Criteria of Scheduling Algorithms (Fairness, Throughput, Resources' utilization,
WT, TT, RT, Context Switches, complexity)

« Ideal Process Scheduling Algorithm (i.e. should maximize what and minimize what)

« Factors affect the scheduler decision & implementation (i.e. Preemption frequency, type of the
process, resolving conflicting requests, Page fault frequency, etc. )

«  Scheduling Algorithms
— First-Come, First-Served (FCFS)
— Shortest Job First (SJF)
— Shortest Remaining Time First (SRTF)
— Process Burst Length Prediction
— Round Robin and its Characteristics
— Round Robin: Disadvantages
— Priority-Based: Priorities assignment, its disadvantages and how to cover them
— Multilevel Queue
— Multilevel Feedback Queue
«  Scheduling Algorithms Evaluation

— Deterministic Model, Queuing Model, Simulations, Implementation
« Scheduling Polices in Different OS
* Introduce Ch. 6 which is going to be studied by yourself

Dr. Tarek Helmy, ICS-KFUPM 79 Baaaaun
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Round Robin Policy: Disadvantages

BSOS a0

« It favors CPU-bound processes:

— An 1/O bound process uses the CPU for a time that is less than the time
guantum then blocked waiting for I/O and latter added to the end of the
ready queue.

— A CPU-bound process runs for all its time quantum and is put back into
the ready queue (thus getting in front of blocked processes).

A solution: use virtual Ready Queue:

— When an 1/0O-bound process has completed, the blocked process is
moved to an auxiliary gueue which gets preference over the main ready
gueue.

— A process dispatched from the auxiliary queue should be favored. i.e.

« Given more time quantum or more frequency. i.e.

— Take two processes from the auxiliary queue and one from the
ready queue.

FFdfLo LD



Queuing for Virtual

Round Robin

Dr. Tarek Helmy, ICS-KFUPM

BRSaaaanm
L
= Time-out
o
: | Ifthe QT for processesinthe RQis T1_|
o Ready Queue
o Admit Dispatch Release
L
B
Aunxiliary Queue
/O 1 I/O 1 Wait
Occurs
I/O 2 Wait
O 2 ai
Occurs
/O 2 Queue
. L
a
L'O n L/Oy i Wait o |
Occurs A
/O r» Queue 3
o
L
L
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RR Policy and Fairness
RS aaaah

« Tries to give a fair share of CPU to each process (i.e. 1/N of the CPU time to
each process if there are N processes of the same type).

« The algorithm should compute the ratio of actual CPU time used to the CPU
time that the process should have been assigned (for a fair CPU assignment)

FoLr L@@

— Runs the process with the lowest ratio until the ratio moves above its closest competitor.

« Takes into account the owner of the process and the number of processes

per user when scheduling in multiuser system.

« Is CPU time shared among the users or processes fairly?

— Example: User 1 has 4 processes, A, B, C, D, and user 2 has 1 process
E. Then with round robin scheduling the execution sequence would be: A
EBECEDE....

FFdfLo LD
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R Priority Scheduling Policy

« A priority number is associated with each process (based on a

certain criteria).

FoLr L@@

« The CPU is allocated to the process with the highest priority (smallest
integer = highest priority)

— It can be Preemptive or Non-preemptive
— Equal priority processes are scheduled in FCFS order.

— SJF is a priority scheduling where the priority is assigned based
on the predicted next CPU burst time.

* Problem = Starvation (low priority processes may never execute)

— Aging: Increase the process priority the longer it stays ready but

IS not run.

FFdfLo LD
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Example of Priority Scheduling: Non-Preemptive Version

BRGS0 h
L
- Process Burst Time Priority
a4 P1 10 3
a P2 1 1
a P3 2 4
P4 1 5
P5 5 2
0O 1 6 16 18 19
.
AWT= Z(TStart touse CPU T Arrive )/n: (6+O+16+18+1)/5 - 8-2 4
o |
.
L
L
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W a . Priorities Assignment

 Rate Monotonic Scheduling (RMS)
— A static/fixed priority assignment scheme

« Assign priorities inversely proportional to the execution times

FoLr L@@

« Shortest execution time first
* Longest execution time first
— According to recourses utilization
* A process with less recourses utilization first
* A process with more recourses utilization first
Lower-priority may suffer from starvation.
Solution: allow a process to change its priority based on its age or execution history.

Earliest Deadline First (EDF)Scheduling (for real time processes)

— Dynamic priority assignment scheme.
— Periorities are assigned according to absolute deadlines:
» The earlier the absolute deadline, the higher the priority.
— EDF can achieve 100% CPU utilization while still guaranteeing all the deadlines.

Dynamic Priority algorithms provide better processor utilization than Fixed Priority
algorithms.

FFdfLo LD

Dr. Tarek Helmy, ICS-KFUPM 85 WG aaamWm



Hybrid Priorities Assignment
RS aaaah

To improve predictability for critical processes, use a combination of

fixed and dynamic priority algorithms.

FoLr L@@
[ ]

« Processes divided based on criticality into “critical and non-critical”

Processes.

« Critical processes scheduled using fixed priority assignment.

« Non-critical processes scheduled based on dynamic priority

assignment.

FFdfLo LD
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Preemptive Priority Algorithm

BSOS a0

 When a process arrives at the ready queue with a higher priority

than the running process, the new one preempts the running

FoLr L@@

process.
— Low priority processes can starve
— l.e. UNIX uses aging to prevent starvation

— aging: If a process has not received service for a long time, its

priority is increased again.

FFdfLo LD
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Multi-level Queue Scheduling

FoLr L@@

Till now we were using one ready queue for all ready processes and one scheduling
algorithm to schedule all of them.

A multi-level queue-scheduling (MLQ) algorithm partitions the ready queue into several
separate queues.

Created for situations in which processes are easily classified into groups:
— Foreground (interactive) processes, Background (batch) processes.

These two types of processes have different response-time requirements, and thus,
different scheduling polices are needed.

The processes are permanently assigned to one queue, based on some properties of
the process. (e.g. memory size, priority, or type).

Each queue has its own scheduling algorithm. For e.g. the foreground queue might be
scheduled by an RR algorithm (improve throughput under light load), while the
background queue is scheduled by a FCFS algorithm.

Scheduling must be done between the queues.

— Fixed priority scheduling: Serve all from higher-priority then from lower-priority;
possibility of starvation.

— Time slice: Each queue gets a certain amount of CPU time which it can schedule

amongst its processes; e.g., 80% to foreground in RR 20% to background in FCFS

FdoLo L@
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Multilevel Queue Scheduling

BSOS a0

Example: A MLQ with 5 queues:

Highest priority

/

Real Time Processes —

l

/

Lowest priority
Possibility |
* If each queue has absolute priority over lower-priority queues then no process in the lower priority
gueues could run unless the processes of the highest-priority queue were all done.

* For example, in the above figure no process in the batch queue could run unless the queues for
system processes, interactive processes, and interactive editing processes will all empty.

Possibility Il

+ Ifthere is a time slice between the queues then each queue gets a certain amount of CPU times,
which can then schedule it among the processes in its queue. For instance;
— 30% of the CPU time to System Processes using Priority Scheduling Policy
— 25 % of CPU time for RT processes using RR.
— 20 % of CPU time for Interactive using SRT
— 15% of the CPU time to background queue using SRTF.
— 10% of the CPU time to Batch processes using FCFS

Dr. Tarek Helmy, ICS-KFUPM 89 WmEUaaauWm
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e Multilevel Feedback Queues

* The problems with Multilevel Queue Scheduling are that:

* One gqueue may be full while the other may be empty: leads to wasting CPU
time assigned to it.

« This could create some problems with CPU hogging and starvation.

« Ifaverylong process is put on Q1, it could hog all of the time given to
Queue 1, preventing the other processes from running.

« Once a process is put on a queue, it must remain there till its competition.

FoLr L@@

* Proposed Solution

— Feedback queues attempt to solve this by allowing a process to move
between various queues by:

« Separating processes with different CPU-burst characteristics.

* Leaving I/0O-bound and interactive processes in the higher-priority
gueues.

* Migrating a process waiting too long in a lower-priority queue to a
higher-priority queue (aging can be implemented this way).

FFdfLo LD
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Multilevel Feedback Queues

BSOS a0

FoLr L@@

Highest priority

N Quantum =4

R Quantum = 8 T

-+ 2797 >

Lowest priority
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Multilevel Feedback Queues

L R RSN

L

=

o

-

J . . .

: Highest priority
-4 Quantum =4

>

_i Quantum = 8 ]
L-f FCFS g

Lowest priority
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Multilevel Feedback Queues

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM 03 MG aaamwm

« Multilevel-feedback-gqueue scheduler implementation affected by the
following parameters:

Number of queues
Scheduling algorithm for each queue
Method used to determine when to upgrade a process.

Method used to determine which queue a process will enter
when that process needs service (i.e. all ready processes enter
at the end of queue 0) .

Method used to determine when to downgrade a process to a
lower-priority queue (i.e. move down one level at the end of each
guantum)
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Example: Multilevel Feedback Queue

BSOS a0

 Three queues:

— Q, — Time quantum 8 milliseconds

FoLr L@@

— Q; — Time quantum 16 milliseconds

— Q, — Time quantum oo, what is the appropriate scheduling
algorithm?

« Scheduling

— A new job enters queue Q,, when it gains CPU, it receives 8
milliseconds.

— If it does not finish in 8 milliseconds, it moves to queue Q;.

— At Q,, the job receives 16 milliseconds, if it still does not

complete, it is preempted and moved to queue Q..

FFdfLo LD
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Multilevel Feedback Queues

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM
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Multilevel Feedback Queues

UL LR
L]
: P1 P2 | P3 P4 P1 P2 P4 P1 | P4
30 8 16 21 29 45 47 63 67 69
=
Y e n Q, (Quantum time = 8): o | BT

— P1 uses 8 and needs 20 more P1| 28

— P2 uses 8 and needs 2 more P2| 10

— P3 uses 5 and terminates P31 o

— P4 uses 8 and needs 18 more P4] 26

« SoP1, P2, P4 will goto Q, P | BT
(Quantum time =16): P1 | 20

Dr. Tarek Helmy, ICS-KFUPM 6 WG aaaTWm
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Multilevel Feedback Queues
S agaaan

FoLr L@@

Dr. Tarek Helmy, ICS-KFUPM

PL | P2 |P3| P4 | P1 P2l P4 P1 [P4
0 8 16 21 29 45 47 63 67 69
« P1, P2, P4in Q, (Quantum time =16): P BT
— P1 uses 16 and needs 4 more; P1 20
— P2 uses 2 and terminates: P? 2
— P4 uses 16 and needs 2 more;
P4 18
« So P1(4), P4(2) will go to Q, (Quantum
time = )
— P1 uses 4 and terminates:
— P4 uses 2 and terminates.
P BT
e AWT, ART & ATT ? P1 4
* You need to calculate them for all
processes. P4 2
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Comparison of the Algorithms
BSaaaTh

« After studying the following scheduling algorithms:

First-Come, First-Served (FCFS)
Shortest Job First (SJF)

Shortest Remaining Time First (SRTF)
Round robin

Priority Scheduling

Multilevel queue

Multilevel feedback queue

 Which one is best?
 The answer depends on:
— The system workload (which is extremely variable),

— The type of concurrently running processes (batch, real time, interactive,
etc.),

— Hardware support for the dispatcher,

— Relative weighting of the performance metric criteria (response time, CPU
utilization, throughput, etc.)

« Hence the answer depends on too many factors.

FoLr L@@
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epp——— CPU Scheduling Algorithm Evaluation

« Define the criteria for evaluation and comparison:

— Maximize CPU utilization with maximum response time < threshold
value.

» Keep the CPU as busy as possible.
— Maximize throughput, how?

 Make the CPU executes and completes as many processes as it
can.

« Environment in which the scheduling algorithm is used will change
— An algorithm may be good today, but not good tomorrow?

FoLr L@@

« Evaluation methods
— Deterministic modeling
— Queuing models
— Simulations
— Implementation
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S Deterministic Modeling

« Deterministic modeling:

— Deterministic modeling is an analytic evaluation,

FoLr L@@

— Consider a predefined workload (set of processes) and evaluate
the performance of each algorithm for that workload to determine

the best decision is what.
— Simple, fast, and gives exact numbers,

— Too specific, and requires too much exact knowledge to be

useful.
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Example: Compare FCFS, SJF, RR, &MLFQ

L R RSN
3
a
: « Consider the following scenario with 3 processes P1, P2, and P3.
. Processes | CPU Time | Arrival Time
u P1 44 0
P2 9 1
P3 13 2

« Assume the context switch takes one time unit.

« Assume the scheduler itself takes 2 time units and Is ready to act at
time 2.

 Letus say our goal is to maximize the throughput.

« To maximize the throughput,
— What is the evaluation Criteria we should calculate?
* Turn around time

What is the best scheduling algorithm for executing them?
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FCFES and SJF Polices

RS a0 %
|
|
N o
nE 46 56 70
s ATT = [(46-0) + (56-1) + (70-2)] / 3 = 56.33
SJF
2 B P W RPL
2 1 25 70

ATT = [(70-0) + (11-1) + (25-2)] / 3 = 34.33

Processes CPU Time | Arrival Time

P1 44 0
P2 9 1
P3 13 2
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RR (Quantum = 10)

FoLr L@@

2 12 22 33

ATT = [(75-0) + (22-1) + (48-2)] / 3 = 47.33

Processes CPU Time | Arrival Time
P1 44 0
P2 9 1
P3 13 2

Dr. Tarek Helmy, ICS-KFUPM
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BRGS0 n

MLFQ

Arrival
ﬁ

Q.1 A=10

Terminate

FoLo L@

;“Tennmate

2 12

22 33 54

Terminate

58 73

ATT = [(73-0) + (22-1) + (54-2)] / 3 = 48.67

Processes CPU Time | Arrival Time

P1
P2
P3

44 0
9 1
13 2

Dr. Tarek Helmy, ICS-KFUPM
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Compare FCFS, SJF, RR, &MLFQ

L R RSN
|
o
o
-
E Scheduling Algorithm ATT Order
FCFS 56.33 4
SJF 34.33 1
RR 47.33 2
MLFQ 48.67 3

« That means, we can use case based learning mechanism and if
we have similar set of processes and our objective is to maximize
the throughput, the SJF is the best decision
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Queuing Models

BSOS a0

— Mathematical and statistical analysis

« Use the distribution of processes (CPU, I/O bound) arrival and the average
waiting time to compute the average length of ready queue which will affect
the (throughput, utilization, ...).

FoLr L@@

« Example: Little’'s formula
nN=AXW
n: average queue length (efficiency of the algorithm)
A: average arrival rate (incoming processes)

W: average waiting time (depends on the scheduling algorithm)
n

I
» if A=7 processes/sec, and W=2 sec. 2> n=14

« As far as the algorithm is minimizing the average queue length n, it will be
good.

« Can only handle simple algorithms and distributions.
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Simulations

BSOS a0

« Simulate a computer system model:
— Use data structure techniques to model queues, CPU, devices, timers, efc...

— Simulator modifies the system state to reflect the activities of the devices, CPU, the

FoLr L@@

scheduler, etc.
« Data to drive the simulation
— Random-number generated according to probability distributions
* Processes, CPU- and I/O-burst times, arrivals/departures
« Disadvantage — expensive

« Many open source CPU scheduling simulators are available on the web: i.e.

— http://cpuss.codeplex.com/

—  http://lwww.jimweller.net/jim/java_proc_sched/applet.html

— http://www.clusterresources.com/products/maui-cluster-scheduler.php

—  http://www.redbooks.ibm.com/abstracts/sg246038.html

—  http://www.platform.com/workload-management/high-performance-computing
— http://en.wikipedia.org/wiki/Portable Batch System

— http://www.oracle.com/technetwork/oem/grid-engine-166852.html.

— http://oar.imag.fr
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Implementation

BSOS a0

In an open source OS like UNIX, Linux

* Propose or refine the code of any scheduling algorithm,

FoLr L@@
[ ]

« Put the coded algorithm in the real system for evaluation under real

operating conditions.

« Evaluate its performance empirically

Difficulty

— Costly in coding the algorithm,

— Needs to have an open source OS.
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Windows 2000, NT, XP, 7 & 8 Scheduling

FoLr L@@
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« Windows uses a priority-based pre-emptive scheduling algorithm and 31
priority levels (31 is the highest).

» Priorities are assigned to both processes and threads.

* A running thread will run until it is preempted by a higher-priority one,
terminates, time quantum ends, calls a blocking system call

« Ranges of priorities are defined for processes and threads:
— Processes - idle, normal, and very high
— Threads - idle, below normal, normal, above normal, highest

« Dynamic priority may be adjusted up or down by the OS to reflect changing
conditions.

— Lower (not below base priority) when its time quantum runs out
— Priority raised up when it is released from a wait operation
* The higher level depends on the reason for wait
« Waiting for keyboard 1/O gets a large priority increase
« Waiting for disk 1/0 gets a moderate priority increase
— Process in the foreground window get a higher priority

109 mMEaaaamm
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Windows Process Priorities

Dr. Tarek Helmy, ICS-KFUPM

e Compute until end of slice: priority lowered
«  After waiting for I/O: priority raised
— If I/O was mouse, keyboard: priority raised even more
— [Favors interactive processes
« Foreground process (window) receives larger slice than background process (3x)

110 W@ 'a a

L LRy
L
‘ - -
d priority classes
J A
| ' N
: real- L above - below idle
time g normal normal priority
[ time-critical al 15 15 15 15 15
highest 26 15 12 10 8 6
levels above normal 25 14 11 9 7 5
within < normal 24 13 10 8 6 4
class below normal 2 12 7 5 |
lowest 22 1 8 6 4 2
idle 16 1 1 1 1 1
\
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Windows 10 Scheduling
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Windows 10 uses a round-robin technique with a multi-level
feedback queue for priority scheduling.

The ready queue is partitioned into multiple queues of different
priorities.

The system use to assign processes to gueue based on their CPU
burst characteristic.

If a process consumes too much CPU time, it is placed into a lower
priority queue.

Process that waits too long in a lower priority queue may be moved
to a higher priority queue.
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Linux Scheduling
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« Separate Time-sharing and real-time scheduling algorithms
Allow only processes in user mode to be preempted
— A process may not be preempted while it is running in kernel mode, even if a real-

time process with a higher priority is available to run
Soft real-time system

« Two algorithms: time-sharing and real-time
« Time-sharing

Prioritized credit-based — process with most credits is scheduled next
1 credit subtracted when timer interrupt occurs
When credit = O, process suspended, another one chosen
When all ready processes have credit = 0, re-crediting occurs
 credits = credits / 2 + priority (internally: high priority = high int)
« So, if process did I/O before credits = 0, it has more credits next time

« |/O-bound, interactive processes accumulate more credits Real-time
scheduling

Two real-time scheduling classes: FCFS (non-pre-emptive) and RR (pre-emptive)
* PLUS a priority for each process

Always runs the process with the highest priority
« Equal priority = runs the process that has been waiting longest
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Unix System Scheduling

FoLr L@@

second.

priority).
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« Adopts multilevel feedback with RR
* There is priority involved with each queue.

« If a running process does not block or complete, it is preempted within 1

* Priority is determined according to process type and execution history.
CPU,(i)) =U(i))/ 2+ CPU,(i-1) / 2

* Pj(i) = Priority of Pj at the beginning of interval i (lower values equal higher

- Basej = Base priority of Pj

* Uj(@i) = CPU use of Pj in interval i
«  CPUJ(i) = Exponentially weighted average CPU use of Pj through interval i
* nicej =User control adjustable factor.

113 W@ aaamh

FFdfLo LD



Unix System Scheduling

BSOS a0

The priority of a process is computed once per second.

* The purpose of the base priority is to divide all processes evenly

FoLr L@@
[ )

Into fixed bands of priority levels.

« The CPU and nice components are restricted to prevent a

process from migrating out of its assigned band.

* The bands are swapper, block 1/O device control, file

manipulation, character 1/0O device control and user processes.
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Solaris 2 Scheduling

Priority-based process scheduling
— Classes: real time, system, time sharing, interactive

« Each class has different priority and scheduling
algorithm

Each thread assigns a scheduling class and priority

Real-time processes run before a process in any other
class.

System class is reserved for kernel use (paging,
scheduler)

— The scheduling policy for the system class does not
time-slice
Time-sharing/interactive: multilevel feedback queue

The selected thread runs on the CPU until it blocks, uses

its time slices, or is preempted by a higher-priority thread.

— Multiple threads have the same priority 2 RR

Dr. Tarek Helmy, ICS-KFUPM
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Summary

BSOS a0

« CPU scheduling is the task of selecting a waiting process from the
ready queue and allocating the CPU to it. The CPU is allocated to

FoLr L@@

the selected process by the dispatcher.

« FCFSis the simplest scheduling algorithm but it can cause short
processes to wait very long.

« SJF provides the shortest average waiting time. Implementing SJF
IS difficult, due to the difficulty in predicting the length of the next
CPU burst.

« SJF is a special case of the general priority scheduling algorithm,
which allocates the CPU to the highest-priority process. Both SJF
and priority may suffer from starvation. Aging is a technique to

prevent starvation.
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Summary

RR scheduling is appropriate for time-sharing systems. RR allocates
the CPU to the first process in the ready queue for g time units. The
major problem is the selection of the time quantum. If the quantum is
too large, RR degenerates to FCFS; if g is too small, overhead due to
context switching becomes excessive.

The FCFS algorithm is non-preemptive
The RR algorithm is preemptive.

The SJF and priority algorithms may be either preemptive or non-
preemptive.

Multi-level gueue algorithm allows different algorithms to be used for
various classes of processes. The most common is a foreground
Interactive queue which uses RR scheduling, and a background
batch queue which uses FCFS scheduling.

Multi-level feedback queues allow processes to move from one
gueue to another.
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Multiple-Processor Systems: FYIl only

L R RSN

|

W| . Sofar we looked at CPU scheduling algorithms Multi-Processor

. for single processor systems. If multiple CPUs

J - -

. exist, the scheduling problem becomes more

3 complex. SIMD MIMD
| Classifications of Multiprocessor Systems:

Dr. Tarek Helmy, ICS-KFUPM

»  Symmetric Multi-Processors (SMP):

« Loosely coupled multiprocessor, or clusters

Each processor has its own memory and

I/O channels. (tightly coupled)

« Functionally specialized processors

Such as 1/O processor
Controlled by a master processor

Master/Slave

The OS code and data structures are global A .
symmetric

(stored in the shared memory and equally
available to each processor).

Controlled by operating system

One copy of OS in memory, any CPU can
use it.

OS must ensure the consistency of shared
data.

Shared Memory Distributed Memory

(loosely coupled)

Symmetric  Clusters

s

-_ Shared _-
cPU— —cry

Memory

o
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Multiple-Processor Scheduling: Design Issues
BSaaaTh

« Scheduling on a multiprocessor involves 3 interrelated design issues:
— Assignment of processes to processors

* One of the design issues that must be decided is (which process to

assign to each processor?).
— Actual dispatching of a process [Process Scheduling]
— Use of multithreading on individual processors [Threads Scheduling]
* Itis two dimensional problem

— Which processor runs the next process? (processor scheduler,

coordinator processor)

— Which process runs next? (process scheduler, per processor)
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Assignment of processes to processors

FoLr L@@

1. Master/slave architecture (Asymmetric MP Scheduling)

Main kernel functions always run on a particular
processor/master. Master is responsible for scheduling

Slave processors execute user processes.

Only one processor accesses the system data structures,
alleviating the need for data sharing.

No coherency problems
Failure of master brings down the whole system.
Master can become a performance bottleneck.

2. Peer to Peer architecture (Symmetric MP Scheduling)

OS executes on any processor
Each processor does self-scheduling

Processes may be in a global ready queue, or each
processor may have its own ready queue

Mutual exclusion problems (Make sure two processors do
not choose the same process; needs lots of
synchronization)

SMP is supported by all modern operating systems:
Windows, Solaris, Linux, Mac OS X.

Dr. Tarek Helmy, ICS-KFUPM
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Assignment of processes to processors

FoLr L@@

Dynamic vs. static assignment of processes to processors: Types of policies:
« Static: decisions have been known to system
* Dynamic: uses load information
« Adaptive: policy varies according to load

« Exploit cache affinity: try to schedule a process/thread on the same processor
that a process/thread executed last.

» Context switch overhead
— Quantum sizes larger on multiprocessors than uni-processors
— Preemptive versus non-preemptive
 Measure of load: Queue lengths at CPU, CPU utilization
— Transfer policy: when to transfer/migrate a process?
» Threshold-based policies are common and easy
— Selection policy: which process to transfer/migrate?
* Prefer new processes
« Transfer/migration cost should be small compared to execution cost
— Select processes with long execution times
— Location policy: where to transfer/migrate the process?

Dr. Tarek Helmy, ICS-KFUPM
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Dynamic vs. Static Assignment

The assignment of processes to processors can be static (till the process
completes) or dynamic (may change each time a process is dispatched).

Static assignment maintains a separate ready gueue for each processor.

— Loads can become unbalanced if the processes in one queue run longer
than those in another queue.

— Coordinating agent as a middle layer is needed to make assignment
decisions [Hot Research area!!].

— If processes on different processors are dependent, the schedulers on
the processors must synchronize the processes according to some
synchronization and resource access-control protocol.

Dynamic assignment: use a Global queue and processes are allowed to
migrate from processor to processor.

— When a process returns to the Ready state, it returns to a shared queue
and when it is dispatched will run on the next free processor.

FFdfLo LD



Multiprocessor Scheduling: Global Queue
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« Asingle scheduling algorithm is used to schedule all tasks.

Important Difference:

FoL L Ll e

—  Schedule to any available processor.

— May cause overheads if a processes

migrates to a new processor.

—  Static scheduling reduces this problem.
*  Appropriate only on tightly-coupled/multi-core

systems.
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Multiprocessor Scheduling: Partitioning
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«  Partition processes so that each process always runs on the same
processor.

1. Dedicate short-term queue for each processor
2. Schedule processes on each processor using uni-processor algorithms.
3. Lessoverhead
Problems with Partitioning | (R
o . . il P1
* Variations in computation costs may necessitate a re-
partitioning. Processor could be idle while another processor -: P2
il

FoLr L@@

A 4

has a backlog.
P3

« Which is good? Scheduling dependent processes or threads at ]
the same time across multiple CPUs or to the same CPU? l l_, P4

 Shall partitions size be fixed or dynamically modified?

* Equal-partition: constant number of processes allocated evenly
to all processors: Low overhead.

« Dynamic: dynamically reallocates processes to maximize
utilization: High utilization.

Problematic because:

A 4

— Re-patrtitioning may cause task migrations...
 Partitioning is designed to avoid tasks migrations.
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Multiprocessor Scheduling: Processor Affinity

On a SMP, each processor has its own local cache or caches

Scheduling a process where it has “Cash affinity” improves performance by reducing
cache penalties.

Suppose process P is running on CPU # 0 for this time slice
The cache of CPU # 0 contains many entries copied from P’s address space (PCB)
After context switch, P is assigned to CPU # 1
The cache of CPU # 1 has no entries of P’s address space
Must re-fetch from main memory
— Very expensive
If P was assigned to CPU # 0 instead, re-fetching would be minimized

Some OSs try to re-assign a process to the CPU it was running last. This is called
Processor/Cash affinity

Cash affinity can be either soft or hard affinity
— Soft affinity: “best effort” to get same CPU but no guarantee
— Hard affinity: A process can request and get same CPU, guaranteed
Load Balancing:
— SMP systems must keep the workload balanced across all processors
— Only necessary in systems where each processor has its own queue.
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e p—— Multiple-Processor Scheduling: Load Balance

« Two general approaches

Push migration: A specific process periodically checks the load on each
processor.

— If it finds an imbalance, it moves (pushes) processes to idle processors

« Pull migration: An idle processor pulls a waiting process from a busy
processor.

 Hybrid. Uses both push and pull.
— Example: Linux scheduler implements both.
— Linux runs balancing algorithm every 200 milliseconds (push)
— Or whenever the run queue for a processor is empty (pull)
 Problem: load balancing often counteracts the benefits of processor affinity
— If using push or pull migration will take a process from its processor
— This violates processor affinity
— No absolute rule governing which policy is best

* In some systems an idle processor always pulls a process from a
non-idle process.

* In other systems process are moved only if the imbalance exceeds a
threshold.
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p—— Ch. 6 Process Synchronization

» To practice collaborative learning as we agreed, to foster self learning skill, and to help us
progress in the course,

* You need to study Ch. 6 “Process Synchronization” and it will be included in the Major Exam
Il.

« Office hours can be used to answer any inquires about this chapter.
* Your objectives out of this chapter is to know:
— Why synchronization? Necessity of synchronization in OS
— How do processes work with resources that must be shared between them?
— What is a critical section?
— How to ensure that only one process can access the critical section?
— What is atomic operation? It executes without interruptions, all or none.
— Dangers of handling the critical section without synchronization.
— Different algorithms to synchronize two processes enter of critical section.

« Evaluating synchronization algorithms of handling a critical section where every algorithm
should allow Mutual Exclusion, Progress and bounded waiting.

— Synchronization tools

— Semaphores, and types of Semaphores
— Incorrect usages of Semaphores

— Classical problems of synchronization
— Monitors
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Synchronization methods in different OSs.
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The End!!
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