BSOS a0

Foor L@ sr

Operating Systems 431

Intensive Introduction of Operating Systems
[Chapters 1, 2, and Parts of 3, 13]

Dr. Tarek Helmy El-Basuny

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS Baaaaah

Outline

BSOS a0

* |n the last class:

 We presented the course information and some coordination issues.

Foor L@ sr

 We agreed on the grading polices including the lab component.
* We discussed the topics to be covered during this course.

* We discussed the course objective and learning outcomes.

 From today’s class,

* We will start the intensive introduction of the operating systems.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 2 WMaaaamh

BSOS a0

Outline of Today’s Class

« We will discuss:

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

« Computer-System Components & Organization,
« Computer-System Operation,

« Different definitions of the OSs,
» Benefits of the OS to users and application programs,
 Different types of OSs,

* The Major OS Issues,

« Operating System Services,
« Different views of the OS,

3

Baagaa30%

FFdfLo LD

BSOS a0

Computer System’s Component

Foor L@ sr

Banking Airline Web
system reservation | browser
. , Command
Compilers Editors interpreter

Operating System

Machine language

Microarchitecture

Physical devices

Dr. Tarek Helmy, KFUPM-ICS

* A computer system consists of

— Hardware modules: Provides basic computing
resources (CPU, memory, I/0O devices).

— Operating system: Controls and coordinates the
use of the hardware resources among various
application programs for various users.

— Applications programs: Define the ways in which
the system resources are used to solve the
computing problems of the users (provide services)
(compilers, database systems, video games,
business programs).

— Users (people, other computers).

} Application programs

| System
programs

r Hardware

user

user

user

compiler

assembler

text editor

database
system

system and application programs

operating system

computer hardware

4 WwWaaJda0n.

FFdfLo LD

BSOS a0

Computer System Organization

Foor L@ sr

A computer system consists of a CPU, a memory and multiple 1/0 device
controllers that are connected through a common bus.

Device controllers interface with the 1/O devices under the OS control.
— One controller may handle several devices of the same type
— Controllers have local buffers and a set of specific purpose registers.
— The size of the local buffers various from one device to another.

Each device controller is responsible for moving the data between the
device it controls and its local buffer under the OS control.

I/O is from the device to local buffer of controller.
The CPU can access information directly only if it is kept in main memory.

I/O devices and the CPU can execute concurrently, competing for the
memory access.

To ensure orderly access to the memory, the OS with memory controller
should synchronize access to the shared memory.

mouse keyiboard primnter monitor

disks

i n

. |

disk graphics
CcPuU e e USB controller adapter

Dr. Tarek Helmy, KFUPM-ICS

Baagaa30%

Lo LD

Foor L@ sr

Computer-System Operation

BSOS a0

 After turning on a computer system, its main memory is empty:
how can the execution of programs be started?

« A small part of the OS (BIOS) is built in the board (ROM/EPROM).

« First, the CPU executes the BIOS to validate the system
resources.

« Second, the essential parts of the OS are loaded from the har
disk to the main memory and then executed.

« Third, the execution of a user’s programs (processes) begin.

* |Instructions are executed one after the other as specified in the
running program.

« If an I/O operation is required, the program under execution is
temporarily suspended, and the CPU switches to execute another
service program.

* Interrupts are used to signal important events; they disrupt the
flow of execution temporarily.

* The purpose of an interrupt is to transfer control from the current

task to the OS.

Dr. Tarek Helmy, KFUPM-ICS

ey
Sk

DIESS

DICESS

Baagaa30%

[N N NN

What is an Operating System?

BSOS a0

 There is no a universally accepted definition for the OS.
It's a program that mediates between the application programs and the

hardware.
You are here

Application Program

Computer Hardware

Foor L@ sr
[)

« The OS is a resource manager, where it supports:
— Each program to get time with the resource,
— Each program to get space on the resource.

« The OS allows application programs to co-exist peacefully
— Enforces security policies,
— Enforces safety measures,
— Error detection & recovery,
— Accounting,
— Protection,

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 7 WA aaalh

BSOS a0

Operating System Definitions

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

The OS controls the execution of user’s programs and operations of I/O
devices.

The OS provides abstractions to simplify building applications: i.e.
— Files instead of “bytes on a disk”

— Contiguous memory regions (segments/pages) instead of “bits in a RAM
chip”.

The OS is an extended machine that:
— Presents user with a virtual machine, easier to use.
— Hides the messy details which must be performed.

An OS can be viewed as an event-driven system that:
— Reacts to events as they occur by the user or the running processes.

Write your own definition here,

S WMo aaau%

FFdfLo LD

Why do we bother ourselves with OS?

BSOS a0

* Running application's benefits
— Programming simplicity of the applications.
« See high-level abstractions (files) instead of low-level hardware
details (device registers).
« Abstractions are reusable across many APIs.
« User's benefits
— Safety
* Program “sees” own virtual machine, thinks its owns computer
» OS protects processes from each other
« OS fairly multiplexes resources across running processes
— Efficiency (cost and speed)
« Share one computer across many users

« Concurrent execution of multiple programs on the same
recourse.

« Improve throughput (the amount of work that a computer can do
in a given time period) due to the concurrency.

Foor L@ sr

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS O WM aaalh

BSOS a0

The Operating System Types

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

Single Processor operating systems: Designed to support concurrent
executing of processes on a single processor machine.

Multiprocessor operating systems: Designed to support large collection of
concurrent executing of processes on multiprocessor machines (Multi-core).

Single Processing Operating Systems: the OS allows a single process to
run at a time.

Multi-Processing or Multi-Task Operating Systems: the OSs that allow
the execution of multiple processes at the same time/concurrently.

Multi-processing can be of two types namely, pre-emptive or co-operative.

— In preemptive multiprocessing, the operating system slices the CPU time
and dedicates one slot to each of the processes. Unix-like operating
systems such as Solaris and Linux support preemptive multiprocessing.

— Cooperative multiprocessing is achieved by relying on each process to
give time to the other processes in a defined manner.

10 o daah

FFdfLo LD

., The Operating System Types

« Server Operating System: it provides runtime support for specialized, high-
performance server applications, e-mail, HTTP, FTP, printer servers.

 Multi-User/Time-Sharing Operating Systems: The operating system allows
multiple users to access a computer system concurrently through the sharing
of time. Unix is an example of multi-user operating systems.

Foor L@ sr

« Single-User Operating Systems: as opposed to a multi-user operating
system, are usable by a single user at a time. Being able to have multiple
accounts on a Windows operating system does not make it a multi-user
system. Rather, only the network administrator is the real user. But for a Unix-
like operating system, it is possible for more than one user to login at a time.

« Single-User, Single-Task: is designed to manage the computer so that one
user can effectively do one thing at a time. The Palm OS for Palm handheld
computers is a good example of a modern single-user, single-task operating
system.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 11 Waaaa@amh

. The Operating System Types

« Single-User, Multi-Tasking: Allows a single user to run several programs at
the same time. MS Windows and Apple's Mac platforms are both examples of
that operating systems.

Foor L@ sr

« Multithreading Operating Systems: that allow different threads of a running
program/process to run concurrently.

« Smart card/Embedded Operating System: It comes pre-installed on a chip
of (Cell phones, PDAs, etc.) to provide highly stable functionalities. (i.e. Java
Card OS, Aptura Smart Card OS). It is able to operate on:

— Slow processors
— Limited recourses due to the size

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 12 WMaaaa@amh

BSOS a0

The Operating System Types

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

Real-Time Operating Systems: are those in which the correctness of the
system depends not only on the logical result of computation, but also on
the time at which the results are produced.

Often used in dedicated applications such as controlling scientific
experiments, medical imaging systems, industrial control systems, and some
display systems. There are two types:

Hard real-time system
— Guarantees that critical tasks be done on time,
— All delays in the system must be bounded,
— Secondary storage is usually limited or missing, why?
« Data stored in short term memory, or read-only memory (ROM),
« Useful for industrial applications.

Soft real-time system

— Deadline is important but not critical,

— Limited utility in industrial control or robotics,

— Useful in real-time applications such as multimedia, networking,
advanced scientific projects, etc..

13 Taadaamh

FFdfLo LD

The Operating System Types

BSOS a0

« Cyber Shield Operating System: designed to deliver verifiable security for
conducting confidential online transactions, such as online banking, or
accessing medical records. https://www.youtube.com/watch?v=XuQdk1HQjNo

It is used to boot the PC with Cyber Shield-OS from a USB or CD, then
conduct one's online banking or other sensitive Internet transactions, then
when finished shut down Cyber Shield-OS and return to one's normal PC
environment.

— Cyber Shield-OS is not intended as a substitute for a general purpose
operating system.

— Cyber Shield-OS is not designed to support the PC's internal Wi-Fi
network adapter. It only allows cable-based internet connection.

— Cyber Shield-OS runs in PC RAM only. It is not designed to install on the
PC's hard drive.

— Cyber Shield-OS does not allow any changes to the original code, any
attempts to install a plug-in will be discarded.

— Cyber Shield-OS includes a built-in firewall that blocks LAN access during
its operation.

— The objective is to isolate the PC running Cyber Shield-OS from other
PC's on the same LAN as the security status of the other PC's may be

Foor L@ sr

unknown.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 14 WMaaaa@amh

S The Major OS Issues

Foor L@ sr
[]

Dr. Tarek Helmy, KFUPM-ICS

As we are going to study the OS, we should think about the followings:
Structure: How are the OS components organized?

Sharing: How are resources shared across users/processes?

Concurrency: How are concurrent processes (computing and I/O) created
and controlled?

Naming: How are resources named (by users or processes)?

Communication: How do processes exchange information, including across
network?

Security: How is the integrity of the OS and its resources ensured?
Accounting: How do we keep track of a resource usage, and perhaps charge
for it?

Performance: How do we make it all go fast?

Reliability: What happens if something goes wrong (either with hardware or
with a program)?

Extensibility: Can we add new features?

Scale: What happens as demands or resources increase?

Distribution: How do multiple computers interact with each other?

15 o aaah

FFdfLo LD

Operating System Services

BSOS a0

« Program execution: System capability to load a program into memory (where,
when, and how long?) and to execute it.

« 1/O operations: Since user programs cannot execute 1/0O operations directly,
the OS must provide some means to perform 1/O.

* File-system manipulation: the OS allows programs to read and write files and
directories, to create and delete them, to for search them, to list file
Information, to manage them, etc.

« Communications: the OS allows processes executing either on the same
computer or on different systems tied together by a network to exchange
information. Implemented via shared memory or message passing.

user and other system programs

Foor L@ sr

G Ul | batch | command line

user interfaces

system calls

program /O file resource

execution operations systems comimunieation allocation aesounting

protection
and
security

error
detection

services

operating system

hardware

Dr. Tarek Helmy, KFUPM-ICS 16 M aaaah

FFdfLo LD

T Operating System Services

® Error detection and recovery: OS needs to be continuously aware of possible
errors.

« Errors may occur in the CPU, memory, I/O devices, or in user’'s program.

» For each type of error, OS should take the appropriate action to ensure
correct and consistent computing.

« Debugging facilities can greatly enhance the user’s and programmer’s
abilities to efficiently use the system.

Foor L@ sr

® Resource allocation: Allocating the resources fairly to multiple processes
running at the same time.

¢ Accounting:
— Keep track of resources utilization, which processes use?

— How much and what kinds of resources for account billing or for
accumulating usage statistics?

® Protection and Security: Ensure that all access to system resources is
controlled and defense of the system against internal and external attacks.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 17 WM aaaah

There are 5 Views of the OS

BSOS a0

Your view of an OS depends on who you are and your
Interest:

« The hardware engineer view

« The operating system designer’'s view
* The application programmer’s view
 The end-user's view

Foor L@ sr

* The system administrator's view

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 18 WMaaaaamh

The Hardware Engineer View

BSOS a0

. The HW engineer interest revolves around:

. The booting process: Bootstrap program is loaded at power-up
or reboot.

* Typically stored in ROM or EPROM, generally known as
Firmware/BIOS

Foor L@ sr

* Initializes all aspects of system
» Loads operating system kernel and starts execution
. Devices and how the OS can use and verify them,

. How to make the interactions between the HW and the OS more
efficient,

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 19 WMaaaa@ah

The OS Designer’s View
BSaaaTh

« The designer’s interest revolves mainly about the OS itself, its
Internal structure, its efficiency, performance, data structures, etc..

Foor L@ sr

e How can we make the OS more efficient?

 How can we add more functionality to upgrade the OS?

« How do we debug the Os to make it more reliable, scalable, etc..

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 20 WMOoaaaah

The Application Programmer’s View

BSOS a0

The OS is like a library with a well defined set of API’s.
The programmer’s interest revolves mainly around:

Foor L@ sr

« What abstractions are available from the OS?
 How well is the API structured?

— Not too low-level, or high-level.
 How portable is the interface?

 Don’t want to keep rewriting the same program for each new OS

release.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 21 Woaaaanm

The End-User’s View

BSOS a0

The OS is just a program that happens to be pre-installed.

Foor L@ sr

The end user’s interest revolves mainly around:
« Users care about applications, not the OS.

A good OS is the one that is most transparent and

friendly.

 The OS must not crash easily.

« Must protect investment in existing applications.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 22 Waaaaank

The System Administrator View

BSOS a0

An OS is a program that allows the efficient and fair usage of
resources.

The system administrator’s interest revolves mainly around:

Foor L@ sr

« How easy is it to install a new software?
 How can it track usage for accounting?

» Security aspects

 [Fairness

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 23 Waaaaamnk

Main Goals of the OS

BSOS a0

1. Maximize Resources Utilization: CPU cycles, Memory, Disk, etc. must
be managed efficiently to maximize overall system performance

2. Resource Abstraction: OS transforms the devices into more abstract and
easily used devices. In this way, it is building an extended machine.

3. Fairness: the OS fairly multiplexes resources across programs
4. Maximize throughput: The amount of work that a computer can do in a
given time period.

5. Virtualization: The operating system creates virtual copies of the
processor and the memory . Supports different OS to communicate and
exchange information. Gives each user the appearance of an unshared
resource.

Foor L@ sr

Applications Applications Applications
Limux VVindowvvws UN I

| E ;:;1 D | E :.u 731_' = E ;:.'—j :;l—' Virtual hardwvvare
I 1 = —3 — |- = — | — —x layer
=1 = | — = —s —

Applications | Virtual machine I Applications r

Operating system Softvware

Physical hardwvvare

Hl| |5 B g
=y —3

Processor NMemory Disk

Dr. Tarek Helmy, KFUPM-ICS 24 WMaaaaanh

FFdfLo LD

Advantages/Disadvantages of VM

BSOS a0

Advantage:

* The virtual-machine concept provides complete protection of system
resources since each virtual machine is isolated from all other virtual
machines.

Foor L@ sr

Disadvantage:
« The isolation, however, permits no direct sharing of resources.

« The virtual machine concept is difficult to implement due to the effort
required to provide an exact duplicate to the underlying machine.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 25 WMaaaaamnm

BSOS a0

Supporting of Multi-processing by OS: why?

Foor L@ sr

« To maximize the throughput and increase system utilization.

« A multiprocessing operating system is a system that allows more than one
active process to be executed simultaneously through the interleaving
between I/0O and CPU bound instructions.

« 1/O bound Instructions are very slow in execution (compared to CPU bound
instruction)

If for instance, there is a CPU with a speed of 400 MHz (400 million

cycles/second)
If each instruction takes 10 cycles/instruction

That means it can execute about 40 million instructions/second
CPU can do (40 x 10°) / 10°= 40,000 instructions/millisecond

If one 1/O instruction like (Reading 1 disk block) takes 20 ms

In time to read one disk block, CPU can do 20 * 40,000 = 800,000

instructions !!.
2 Poor CPU usage when only one process is executing

Rurirn

W it

Ry

W it

Dr. Tarek Helmy, KFUPM-ICS

L

Ulmiprrogsranm i rngs

26 WA aaa0%s

FFdfLo LD

BSOS a0

Multiprocessing

Foor L@ sr

Program A

Program B

Program C

Combined

» |f several processes can execute, then CPU can switch to
another one whenever one is waiting for the I/O to complete.

Run Wait Run Wait
Wait| Run Wait Run Wait
Wait ¢Run Wait Run Wait
Run |RunfRunj -y | Run [RunRun
Time >

Multiiprogramming with three programs

Dr. Tarek Helmy, KFUPM-ICS

27 Waaa'd0s

FFdfLo LD

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

Requirements for Multi-processing OS

BSOS a0

* Multiprocessing OSs were invented to:

— Run multiple processes at once by interleaving 1/0-bound and
CPU-Bound instructions of processes.

« While one process waits for I/O completion, the OS runs
computing instructions from another process.

— But that needs asynchronous I/O devices [after |/O starts,
control returns to user program without waiting for 1/O
completion]

* Need some way to know when the 1/O devices are done
— Interrupts
— Polling
— DMA

— The goal is to maximize the system’s throughput and to
increase system’s resources utilization.

« Perhaps at the cost of response time.

26 WO aaa0ns

FFdfLo LD

Requirements for Multi-processing OS

BSOS a0

« Hardware support:
— Interrupts
* |n order to execute instructions while an 1/O device is busy.
— Extra hardware to support memory management.
= Keeping track of memory usage,
= Process swapping,
= Dynamic memory allocation,

— Base and Limit registers to protect processes from each
other.

Foor L@ sr

« Software support from the OS:
— To manage resources conflict, i.e.
 CPU scheduling (which process is to be run next),
« Deadlock handling,
 Memory allocation,
« Management of I/O resources,

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 29 WMaaaaank

Multiprocessing/Timesharing OS

BSOS a0

® In multiprocessing: CPU is multiplexed (shared) among a number of
processes based one certain policy (i.e. SJF, FCFS, ..) while one process is
waiting for the 1/O, another one can use the CPU.

Foor L@ sr

® Intimesharing: Switching CPU among processes based on a pre-defined
time interval.

* Instead of waiting until the process gives up voluntarily the CPU in multi-
processing environment, take it away at regular intervals (time-slices).

* Divide CPU'’s time equally or non equally among the processes. If a
process is truly interactive (e.g. editor), then it can be given more time.

®* Advantages of both strategies:
— CPU is kept busy and recourses utilization is maximized .

®* Disadvantages of both strategies :

— Hardware and OS became significantly more complex for handling CPU
scheduling, handling deadlock, protection, memory management, virtual
memory, etc.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 30 Wmaaaamm

Multiprocessor Systems
BSaaaah

« Multiprocessor systems with more than one CPU in close communication.
Tightly coupled system (Multi-core system):
— Processors connected at the bus level and share both memory and clock,
— Communication usually takes place through the shared memory,
 Loosely coupled system
— Processors do not share memory and clock (Networked machines)
— Processors interconnected via a high speed communication system,
— Communication usually takes place through communicating messages,
 Three main advantages of Multiprocessor system in general:
— Increased throughput (more CPUs = more work in less time),
— Economy of scale (saves money, CPUs share peripherals),
— Increased reliability (provides redundancy and fault tolerance),

Foor L@ sr
[]

Local

/CF-'U MIemory ~— J“tfi:::u::v-n-.p:let-e systernm ‘
M (A% | LA | M

A @ = s S = EM &M EFM |

R T e oot G tmernet 3 a

=3 B Miabiiald o KS3 _ — . |

= = = IS = =1 =1 = e M [J

(=) (b) (<) ‘

L |

Dr. Tarek Helmy, KFUPM-ICS 3 WMEaaamnh

Multiprocessor Systems

BSOS a0

« Symmetric Multi-Processing (SMP)

— [Each processor runs the same copy of the operating system
« All processors are peers
— The OS is responsible for parallelizing in the application.

— It dynamically partitions tasks across the processors, manages the ordering of task
completion, and controls the sharing of all resources between the cores.

— Many processes can run simultaneously without performance deterioration
» Data sharing should be carefully coordinated for efficiency
— Most modern OSs (Windows, Unix, Linux) support SMP

* Asymmetric Multi-Processing (AMP)

Foor L@ sr

— Master processor runs the OS, schedules and allocates work to slave processors.
— Each slave is assigned a specific task by the master processor;

— More common in extremely large systems (Distributed or Clustered systems).

SEYe Sl SRCE CPU core CPU core
e N
cache cache cache ‘
Jd
memory 4
. . . . o |
Symmetric Multiprocessing Architecture A Dual-Core Design N
L]
Dr. Tarek Helmy, KFUPM-ICS 32 Waaaaann

Distributed Systems

BSOS a0

« Adistributed system is: A collection of independent computers that
geographically distributed and appears to its users as a single coherent
system.

* Runs on a cluster of machines with no shared memory.
* Distributed OS
— A network of computers run a shared OS

— It provides the user with transparent access to the resources (including
the hot resources, i.e. CPU, mail Memory) of multiple machines.

— Therefore;

« Gives the impression, there is a single operating system controlling
the network.

Foor L@ sr

node 2 node 1

mEES
[__Processors % | Processors | |

J
/ 0
‘ Network
node 3 node N -
— — . |
[Processors | o [Processors | 4
F
L |
Dr. Tarek Helmy, KFUPM-ICS 33 WmEaaaamauhbk

Distributed Systems

BSOS a0

« Advantages of distributed systems:
— Resource sharing
« Sharing and printing files at remote sites
* Processing information in a distributed database
— Computation speedup: Load sharing

— Reliability: Detect and recover from site failure, function transfer,
reintegrate failed site.

— Distributed OS Supports communications between jobs:
* Inter-Process Communication (IPC)
» Message passing, shared memory
* Requires
— A single global IPC mechanism,
— A global protection mechanism,
— |dentical process management and system calls at all nodes,
— Common file system at all nodes.

Foor L@ sr

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 34 Waaaaah

Distributed vs. Network Systems

BSOS a0

Machine A

Machine B

Machine C

Distributed applications

Foor L@ sr

Distributed operating system services

Kernel

Kernel

Kernel

CPUs.

DOS.

service layer.

Dr. Tarek Helmy, KFUPM-ICS

Network

» User is not aware of the multiple
» Each machine runs a part of the

» Gives the impression there is a
single OS controlling the network.

» Network is mostly transparent —
it's a powerful virtual machine.

» Applications interact with single

Machine A Machine B Machine C
Distributed applications
Network OS Network OS Network OS
services services services
Kernel Kernel Kernel
Network

User is aware of the existence of
multiple CPUSs.
Each machine has its own private
Operating System and runs

independently from other

computers on the network.
Applications need to know about
location of different services.
Provides mainly file sharing.

Baagaa30%

AP L L

Clustered Systems

BSOS a0

« A computer’s cluster is a group of

networked/distributed computers

Foor L@ sr

Integrity
Servers

working together closely to achieve a

computational task.

FC Switch

S
* Clustered systems share storage and 5 §
closely linked through a local area L “% % E
network (LAN). % = : %

« Clustered systems support high é- E
availability, each node can monitor one = g
or more nodes in the LAN. : ¢ §

Star Couple

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 36 M aaaah

Clustered Systems
BSaaaTh

« Possible clustering schemes:

— Symmetric mode (two or more nodes running applications and monitoring
each other).

— Asymmetric clustering (one is in hot standby mode while another is
running applications; switches to backup if the active one fails).

Foor L@ sr

« Cluster systems categories

— High-Availability clusters are implemented primarily for the purpose of improving
the availability of services that the cluster provides. They operate by having
redundant nodes, which are then used to provide service when system

components fail.

— Load-Balancing clusters is when multiple computers are linked together to share
computational workload or function as a single virtual computer. Logically, from the

user side, they are multiple machines, but function as a single virtual machine.

— Computing/Grid clusters are used primarily for computational purposes, rather

than handling 10-oriented operations such as web service or databases.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 37 Maaaaamh

Computing Models Shift

BSOS a0

» & L]

User :
g T i
P —— L"“'-a Mainframe

Foor L@ sr

g — doud computing

« The main objective here is to discuss how the operating support of each
computing model will be different.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 38 WMaaaaamhm

Client-Server Computing Model

BSOS a0

. In the Client-Server model: The client
sends a request to a server, and the server
responds with the information requested.

— Popular models, e.g. Telnet, http, FTP,

Foor L@ sr

. Client-Server Computing

— Servers, responding to requests

— Client terminals are PCs @

Server

generated by clients

« Server computer provides an client

client

client

client

interface to the clients to request

services (i.e. database)
* File-server provides interface for

clients to store and retrieve files.

/

server

result ‘ result
2 4

Key:
Process: <:>

Computer:

Dr. Tarek Helmy, KFUPM-ICS

network

3O o aamh

FFdfLo LD

BSOS a0

Client =Server Model

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

« Advantages:

Centralization - access, resources, and data security are
controlled through the server.

Scalability - any SW can be upgraded when needed.

Flexibility - new technology can be easily integrated into the
system.

Interoperability - all components (clients, network, servers) work
together.

Accessiblility - server can be accessed remotely and across
multiple platforms

Lower total costs

« Disadvantages:

As the number of simultaneous client requests to a given server
Increases, the server can become overloaded.

The client—server paradigm lacks the robustness, if the server
fails, clients’ requests cannot be fulfilled.

40 R aad0s

FFdfLo LD

Peer-to-Peer Computing Model

BSOS a0

« P2P is a model of distributed system:

— All nodes are considered peers (identical
and there is no distinguish between clients
and servers)

— May each act as client, server or both.

— Peers make a portion of their resources,
such as CPU time, Memory space, disk
storage etc., directly available to other
Peers without the need for central
coordination by servers.

— A node joins a P2P network must:

* Registers its service with central lookup
service on the network, or

« Broadcasts a request for a needed
service and responds to requests for
service via discovery protocol.

— Examples include Napster and Gnutella as
file sharing systems

Foor L@ sr

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 4 Waaaaanm

Advantages & Disadvantages of P2P Computing Model
BSaaaah

 Advantages
— No central point of failure
« All peers in P2P network are the same.
- Data and computation is decentralized/not centralized.
« Peers are autonomous, they have full control.
— Scalability

* Since every peer is alike, it is possible to add more peers to the
system and scale it to larger networks.

« Disadvantages
— Decentralized coordination
« How to keep the global state consistent?
« Require distributed coherency protocols.
— All node’s load may not be equal, Load unbalance.

« Computing power, bandwidth have an impact on overall
performance.

Foor L@ sr

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 42 Wa'aaaah

Web/Cloud Computing

BSOS a0

* Web has become everywhere and available all the time (Ubiquity)

« Computing-intensive applications need more computing and better performance.

« Cloud computing is an Internet-based computing, where shared resources, software
and information are provided to computers and other devices on-demand, like the
electricity grid.

« Cloud computing is a model for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly released with minimal management
effort.

« Cloud computing is a way of managing large numbers of highly virtualized
resources such that, from a management perspective, they resemble a single large
resource. This can then be used to deliver services with flexible scaling.

* Cloud Providers — Amazon, Google, e.g. Google owns more than 20,000 servers/data
center.

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS 43 Waaaaanm

FFdfLo LD

Cloud Computing Frameworks

BSOS aaaah

« So we will just buy everything from the cloud.

FoLe Lo Fllr

Application
Developers

Value Visibilityto End Users

Architects

FF L L L

Dr. Tarek Helmy, KFUPM-ICS 44 WA aaaah

Common OS Components
BSaaaTh

 Process Management Component

« Memory Management Component

Foor L@ sr

 Mass Storage Management Component
* File Management Component
* /0O Management Component

* Protection and Security Component

« Command-Interpreter Component (GUI's shell in
Windows OS and CLI's shell in Unix/Linux OSs).

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 45 Waaaaamh

Process Management Component

BSOS a0

« A process is a program in execution phase.

A process needs certain resources, including CPU time, memory,
files, and I/O devices to complete its task.

 The OS provides the following operations to support processes:
— Creating a process o
— Deleting a process

— Suspending a process
— Resuming a suspended process e e

— Cloning a process
— Supporting Inter-process communication Q G o

— Creating/deleting, ...etc. of a child process (sub-process)

* |In most systems, processes form a tree, with the root (parent) being
the first process to be created.

« An example of a process tree:
— A created two children processes, B and C

« B created three children processes, D, E, and F
« We will get into the details of the process management in Ch. 3 soon.

Foor L@ sr
[]

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 46 Waaaaamh

BSOS a0

Main-Memory Management Component

Foor L@ sr

» The operating system is responsible for the following activities in connections
with memory management:

The OS keeps track of which parts of memory are currently being used
by whom and which parts are free.

The OS decides which processes to load when memory space becomes
available.

* A policy is needed
The OS decides how many block of memory to allocate to each process.
* A policy is needed
The OS maintains the mappings of processes from physical to virtual
memory and vise versa.

» Through page tables

The OS decides when to remove/eject out a process from memory if
memory space it required by a VIP process.

* A policy is needed

« We will get into the details of the main memory management in Ch. 8 soon.

Dr. Tarek Helmy, KFUPM-ICS

47 WwWaaa'dJ0%

FFdfLo LD

BSOS a0

File Management Component

Foor L@ sr

 File Management

— Afile in windows OS is a collection of related information defined by its
creator. Files represent programs (both data, source, object and
executable forms).

— In Unix/Linux files are either ordinary files (doc., exe., pdf., media, etc.),
directory files (folders) or devise file (printers, CD, ..)

— The OS is responsible for the following activities in connections with the
file management:

File creation and deletion.

Directory creation and deletion.

Support of primitives for manipulating files and directories.
Mapping files onto secondary storage.

File backup on stable (nonvolatile) storage media.

« We will get into the details of the file management in CHs. 10 &11 soon.

Dr. Tarek Helmy, KFUPM-ICS

48 Waa a'da0%s

FFdfLo LD

Foor L@ sr

BSOS a0

/O Management Component

The OS is responsible for the following
activities in connections with I1/0O management:

I/O management unit controls the processes
access to I/0O resources via drivers.

I/O management allows sharing and
synchronizing of the 1/O resource.

The 1/O management provides a standard
Interface between process (user's one or
system’s one) and I/O devices.

— File system (disk), sockets (network).

Device drivers are the routines that interact
with specific device types.

I/O management provides.

— A buffer caching system
— A general device driver code
— Drivers for specific hardware devices.

We will present the details of /O management in the intensive introduction & you need to

e fepoar! iy

e

montor

e

sk
confoler

USB contrllr

MmOy

read Ch.13.

Dr. Tarek Helmy, KFUPM-ICS

49

Baagaa30%

FFdfLo LD

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

Mass-Storage Management Component

BSOS a0

« Since main memory (primary storage) is volatile and not enough to
accommodate all data of concurrently running processes, so that the
computer system uses a mass-storage memory to extend (create VM)
and to back up the main memory content.

« Most modern computer systems use hard disks as the principle on-line
storage medium, for both processes and data.

* The operating system is responsible for the following activities in
connection with disk management:

— The mass-storage management unit manages the free space
available on the secondary-storage device.

— The mass-storage management unit allocates of storage space
when new files have to be written.

— The mass-storage management unit schedules the read and write
requests for mass-storage access.

« We will present the details of Mass-Storage management in Ch.12.

SO0 o aJdaTs

FFdfLo LD

Command-Interpreter Component

BSOS a0

* Many commands are given to the OS either from keyboard (command-line
interface, CLI), or script files (i.e. Unix/Linux), or from GUIs through the mouse (i.e.
in Windows or Mac).

* These commands may deal with:
— Process creation and management
— 1/O handling
— Secondary-storage management
— Main-memory management
— Editing and file-system access
— Networking (FTP, Telnet, SSH)

 The OS’s module that reads, interprets and dispatches these commands is called
variously:

— Shell (any program that users use to interact with the OS)
— Control-Card Interpreter
— Command-Line Interpreter

* Its function is to get the command, interprets and dispatches it to the corresponding
module in the OS to execute it.

« We will not present a specific one but you need to practice them on different OSs by
your self in the Lab part .

Foor L@ sr

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 51 M aaaahm

Protection & Security Component

BSOS a0

« Since the OS supports multi-users with concurrent execution of multi-
processes, then these processes or users must be protected from one
another's.

Foor L@ sr

— Protection refers to mechanisms for controlling the access of processes,
or users to the resources defined by a computer system (internal).

— Security refers to defense of the system against external attacks.

« Graceful recovery from errors detected by the hardware
— E.qg. illegal instructions, divide-by-zero...

« Protection/Security mechanisms help to detect any trial for intrusion and
errors, as well as preventing malicious destruction.

— The protection and security component protects all system resources, i.e.
- CPU
* Memory
* Processes
* Files

« We will present the details of Protection & Security aspects in CHs.14&15.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 52 WA aadamh

Example: CPU Protection

BSOS a0

« Since the CPU is one of the hot resources, the OS needs to prevent
processes from hogging the CPU for a long time. i.e.

— Infinite loops

Foor L@ sr

— Waiting for non-exist resources

« OS uses a timer to control process execution so that when the timer
expires, the control switches back to the OS.

— Context switch
« Thisis the idea of CPU time-slicing
— Each process runs for a few msec.

P1

P2
P3

P1is running

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 53 WMo aadaamh

Example: Memory Protection

BSOS a0

« The OS needs to ensure that no process can interfere
with any other processes, i.e.

— Could overwrite other processes in memory
— Needs to protect the OS memory in particular

* Must provide memory protection at least for the
Interrupt vector and the interrupt service routines.

Foor L@ sr

« The OS uses two registers to determine the range of
legal addresses of a process.

— Base register: Holds the smallest legal physical
memory address for the process.

— Limit register: Contains the size of the process.

Dr. Tarek Helmy, KFUPM-ICS

o120

operating system

Job 1

ob 2

ob 3

ob 4

54 WaaJdaT3h

FFdfLo LD

BSOS a0

Base & Limit Registers to protect a process

Foor L@ sr

bbase register

I 1 =20900

Address (supervisor mode)

lirmit register

Base Base+Limit

v

CPU

(user mode) No No

— o
Address Yes Y Yes

AJowa|p

Trap to OS
(Addressing error)

Dr. Tarek Helmy, KFUPM-ICS

Baagaa30%

AL L L

BSOS a0

Storage Hierarchy in the Computer System

Foor L@ sr

In any computer system, the storage systems
are organized in hierarchy based on:

— Speed

— Cost

— Volatility

— Size

Internal programmable registers (index

registers, ACC, etc.) provides a high speed
cache for CPU.

Cache memory: Copying temporary
information into faster storage devices with
access time close to the CPU time.

Main memory: Only the storage media that
the CPU can access directly.

Main memory can be viewed as a last cache
for secondary storage.

Secondary storage: Extension of main
memory that provides large nonvolatile
storage capacity.

Dr. Tarek Helmy, KFUPM-ICS

legisters

" (| Volatile
> | <
& cache
:& B
[v "
gé main memory g{
L A o
- ®
- Q
ﬁ electronic disk ©
Non A
Volatile i
R magnetic disk
A
1]
optical disk
A
Y

magnetic tapes

56

Baagaa30%

FFdfLo LD

BSOS a0

Caching and Consistency

Foor L@ sr

« Caching

Use of high-speed memory to hold recently-accessed data.
Requires a cache management policy (cache size, replacement policy).

Data that resides on the disk are copied into the main memory, then into the
cache and then into the internal registers for modification such as a variable
incrementing A.

Caching introduces another level in storage hierarchy. This requires data that
Is simultaneously stored in more than one level to be consistent.

Consistency Problem: due to replication of data, the may lead to one copy
being different from the others. The OS must insure that all copies of the data
will be the same.

This is not a big problem, in computing environment where only one process
executes at a time. The modification done on the CPU registers can be copied
back to the disk for a consistency purpose.

In multiprocessing environment, extreme care must be taken by the OS so

magnetic
‘ anetic Ty

Dr. Tarek Helmy, KFUPM-ICS 57 WwWaaaaamhk

that if several processes want to access A, then each should get the latest :
value of A. J
4

mrenr?ﬁigry cache 3 h:ie'givsvtae';-e :

a

o

BSOS a0

Caching and Coherency

Foor L@ sr

needs it.

« Coherency: The OS needs to synchronize the data access in
multiple caches such that reading a memory location via any cache
will return the most recent data written to that location.

* To ensure that each cache has a copy of the newest version when it

 OS must ensure that an update of A’'s value will be immediately
reflected in all other caches where A resides.

« Consistency leads to coherency but not the other way.

magnetic
disk

main
memory

hardware
register

Dr. Tarek Helmy, KFUPM-ICS

FFdfLo LD

S MU adaamm

The Problem of Cache Consistency

ERSaaaa%w
: | cPU |
o
J
1 Cache Cache Cache
4
. A T00 x[E50] A0
B’ 200 B’ 200 B] 200
Memory Memory Memory
A 100 A 100 A 100
g| 200 g| 200 s| 440
4e /0 /0
Output of A gives 100 Input 440to B
a) Cache and memory b) Cache and memory c) Cache and memory
consistent: A=A, B’ =B. inconsistent: A’ 1= A. inconsistent: B’ = B.

Dr. Tarek Helmy, KFUPM-ICS

SO WMo aJdaan.

FFdfLo LD

Dual-Mode Operation

BSOS a0

« Two modes of operation are there in any operating system.
— User mode: the control of execution will be done by a user’ s program.

— Monitor mode: (supervisor, or kernel mode) the control of execution will
be done by the OS.

* A Mode bit (a hardware bit) to indicate the current mode: monitor’'s mode
where mode bit=0 and user's mode where mode bit=1.

« When an interrupt or a trap occurs, the control switches to monitor mode.

» All I/O instructions (privileged instructions) can be executed only in monitor
mode.

» Must ensure that a user program could never gain control of the computer in
monitor mode.

Foor L@ sr

USEr process

Interrupt/fault usezj mg(:e_ 1
User process executing = calls system call return from system call e =)
\ /
) /
| 7
kernel trap retum
= mode bit=0 mode bt = 1

Monitor
Mode

kemnel mode
(mode bit=0)

execute system call

set user mode

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 60 WMaaaaam

Privileged Instructions
BSaaaah

« Since user’s program may issue illegal I/O
Instructions: i.e. user application
— Write to a non-existence device

— Read more data than a disk holds Ope”()< j
user

« Some instructions are restricted to be A
executed under the OS control, in monitor or o
supervisor mode. mode A

— They are known as privileged instructions

« User programs can only perform I/O by : open) |
requesting it through the OS. 1] Implementeton

_— » of open ()
. OS retains control over user’s programs. systen call
* e.g., only the OS can: ; :

— Directly access 1/0O devices (disks, retum ——
network cards)

— Manipulate memory state management
» Page table pointers

— Manipulate special ‘mode bits’
* Interrupt priority level

— Halt instruction

Foor L@ sr

system call interface —

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 6] Waaaa@ah

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

R —— Interrupts and Exceptions

 Modern OSs are interrupt or exception driven programs.
« Two main types of events: Interrupts and Traps/Exceptions:

— Interrupts are used to handle asynchronous events external to the
processor, caused by hardware devices [are not visible to the user’s
programs], e.g.:

» A device finishes 1/O operation (keyboards, mouse, etc.)
* Timer fires

— Exceptions or traps or runtime errors detected by the processor itself
while executing the process, means caused by software [It is visible to
the user’s programsj, e.g.:

» An exception e.g., “div. by zero”
* A page fault, “write to a read-only page”
« Asking to make arithmetic operation on non-numbers.

* Interrupt transfers control to the interrupt service routine, through the
interrupt vector, which contains the addresses of all the service routines.

PI’OC?SSOI‘

A

Processor Interrunt

Exception

62 Wadaaah

FFdfLo LD

BSOS a0

Reasons of Interrupts/Exception

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

* Interrupts/Exceptions are essentially what drive the OS.
« Reasons for interrupts (or exceptions/traps) are:

Control of asynchronous I/O devices
CPU scheduling

Exceptional conditions (e.q., illegal instruction) arising during
execution.

User’s process requests for OS services.
etc..

* Interrupt architecture must save the address of the interrupted
Instruction.

* Incoming interrupts are disabled while another interrupt is being
processed to prevent a lost interrupt.

63 Waadaalh

FFdfLo LD

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

BSOS a0

Interrupt Handling

Serving of an interrupt is known as Interrupt Handling.

Different types of interrupts are handled by different interrupt service
routines.

The OS maintains a table, known as Interrupt Vector, that associates
each interrupt's ID with the starting address of its service routine.

An integer is associated with each type of interrupt. When an interrupt
occurs, the corresponding integer is supplied to the OS usually by the
hardware (in a register).

The OS determines which type of interrupt has occurred through:
— An Interrupt Vector

The OS preserves the state of the CPU by storing
— Registers (PC, Process Status Word, SP, Data Registers)
— Additional information about the current process and its state

Separate segments of code determine what action should be taken for

each type of interrupt then execute them.
Upload the status of the process and resume its execution.

64 WA da'aTh

FFdfLo LD

BSOS a0

On Interrupts

Foor L@ sr

The hardware device calls the OS at a pre-
specified location/register,

The OS saves the state of the current
process, (contents of, registers: PC, SP,
general-purpose registers)

The OS identifies the device and the cause
of interrupt,

OS restores the state of the interrupted
process,

Responds to the interrupt by executing the
service routine,

Execute a return from interrupt (RTI) to
return to the interrupted process,

Key Fact: None of these actions are visible
to the user program.

Dr. Tarek Helmy, KFUPM-ICS

Int. A?

Address of Int. A

\ 4

Service
Routine for A

Int. C?

Address of Int. C

A 4

Service
Routine for C

Int. Z7?

/2N,

A

A

Address of Int. Z

A 4

Service
Routine for Z

65 Wada'alh

FFdfLo LD

On Exceptions/Traps

BSOS a0

« The running processes calls the OS at a pre-specified location,

« The OS identifies the cause of the exception (e.g. divide by 0),

Foor L@ sr

» If the user’s process has an exception handling routine, then the OS

adjusts the user’s process state so that it calls its handler routine,

— If the user’s process does not have a specified handler, then the OS

suspends it and runs other available service routines.
» Execute a RTl instruction to return to the user’s process.

« Key Fact: Effects of exceptions are visible to user’s processes and causes

abnormal execution flow.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 66 WMaaaa@ah

BSOS a0

/O Handling Methods/Modes: Ch 13

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

Synchronous/blocking: blocking the progress of a process while the I/O operation
IS in progress, leaving system resources idle. This means that the CPU can spend
almost all of its time idle waiting for I/O operations to complete. How this is
done?

— Request is made to the I/O device,
— The CPU waits for the I/O device,
« Wait instruction idles (Looping) the CPU until the request is completed.

— At most, one I/O request is outstanding at a time, no simultaneous 1/O
processing,

Asynchronous/non-blocking: after requesting for an I/O operation, the control
returns to user’s process without waiting for the 1/O request to be completed,

— Request is made to the I/O device,
— CPU records the request,

» Device-status table: contains entry for each 1/O device indicating its type,
address, and state,

— The CPU continues the process execution, it can be a different one
— After completing of the 1/0O operation, the device interrupts the OS,
— The processor records that the request is done,

— It can resume the process execution.

67 Wada'amh

FFdfLo LD

I/O Handling Methods: Ch 13

L R R
W Synchronous Asynchronous
L :
L(ernel user { requestln_g piocess requesting process } user
i | walilting ——— 4 - r'y
s =~
o device driver device driver
. |
I s L
. =] interrupt handler i tinterrupt handler > kernel
L] % FJ
L]
hardware hardware
L data transfer - —data transfer
L. A
s ———— fims ———
(a) (b)

Device-Status Table

device: keyboard
status: idle These structures are
device: laser printer :’equest for L necessary to keep
: * laser printer .
Ztatqu. =l addregs: 38546 track of 10 in
evice: mouse length: 1372
status: idle progress.
device: disk unit 1
status: idle
g;\;f:s&ssk Ll = ——» request for = request for __—I_-
: o disk unit 2 disk unit 2 L
= file: xxx file: yyy a
operation: read operation: write e
address: 43046 address: 03458 d
length: 20000 length: 500 1
o
L
L]

Dr. Tarek Helmy, KFUPM-ICS Baaaaah

BSOS a0

I/O Data Transfer Techniques: Ch 13

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS 6O mMaagaaum

There are several ways of managing data transfer between |I/O devices and
the main memory.

Programmed 1/O (Polling)

— Processor does all the work.

— CPU checks by polling, reads and writes into device buffers.
Interrupt Driven 1/O

— CPU asks devices to let it know when they are ready

— Device notifies CPU when 1/O operation complete
Direct Memory Access (DMA, a memory controller)

— DMA is programmed by the OS to exchange data at high rate between
main memory and the 1/O device.

— CPU asks DMA to perform the 1/O directly from memory,
— DMA controller performs “I/O”, not CPU,
— CPU notified with DMA complete.

The OS is responsible for choosing & managing the right technique for each
specific I/O in order to deliver the best overall performance.

FFdfLo LD

Foor L@ sr

BSOS a0

Programmed 1/O: Polling

Programmed 1/O (Polling): CPU Polls I/O Device’s Status

Reqisters

CPU regularly checks or polls in turn each I/O
channel or port to determine if it has information for
input or is ready to accept data for output.

/O modules share the bus with the CPU

CPU has direct control over I/O
— Sensing the status through flag register
— Read/write commands
— Transferring data

Polling is time consuming:

CPU must swap between executing processes and
polls of each port.

Wastes CPU time: Programmed 1/O asks for too much
attention of the CPU if the device is fast.

If the device is slow the CPU might have to wait a long
time (most devices are slow compared to modern
CPUs).

The CPU is also involved as a middleman for the
actual data transfer.

Dr. Tarek Helmy, KFUPM-ICS

CPU sends read
request to device

Not ready

CPU waits
for device

1 Ready

CPU reads word
from device

CPU writes word
to main memory

o>

Yes

70 WA daTh

FFdfLo LD

Interrupt-Driven 1/O
BSaaaTh

« The CPU sets up I/O operation and
continues its work,

 The device performs the /O (long
time),

« If the device completes, it interrupts
the CPU,

 Then the CPU responds to the
Interrupt and transfers the data,

e Continue once I/O is complete,

* Interrupts save overhead of polling
the 1/O resources by the CPU.

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

CPU sends read
request to device

l

CPU does other stuff

CPU receives interrupt

CPU reads word
from device

CPU writes word
to main memory

71T WA a'amh

FFdfLo LD

Direct Memory Access

ERSaaaa%w
L
W ° Fast1/O devices (graphics cards, network cards and sound cards,
d i
etc.) use Direct Memory Access (DMA), why?
4) y () y CPU sends read
: « DMA permits the 1/0O device to transfer data directly to or from request to DMA
L memory without having each byte handled by the CPU. unit
— DMA controller moves data between device and memory then l
sends interrupt to CPU only when transfer is complete. CPU does other stuff

1. CPU only initiates operation
2. DMA controller transfers data directly to/from main memory

3. Interrupt when transfer completed CPU receives DMA

interrupt
 DMA enables more efficient use of interrupts, increases data
throughput, and potentially reduces hardware costs by eliminating l
the need for specific FIFO buffers for every resource.
w— Drive
1. CPU @
programs DMA Disk | Main
CcPuU the DMA controller controller memory
controller e Buffer
il =
4. Ack T
/’ T
* 1 ']
L Lin;:gupt Sta L ﬁalr::g?:; :iqu:lZfrtizry 3. Data transferred J

Dr. Tarek Helmy, KFUPM-ICS 72 WMaaaa@ah

FFdfLo LD

Foor L@ sr

BSOS a0

Three Techniques for I/O

Issue Read
command tof CPU — 1/O
IO module

Read status
of 11O
module

Error
condition

Read word
from /O
Module

Write word

into memory CPU — memory

Next instruction
(a) Programmed /O

Dr. Tarek Helmy, KFUPM-ICS

—>

Issue Read
command to
I/O module

PU — I/O
Do something
= Palse

Read status
of /10O
module

=== Interrupt

1’10 — CPU

Error
condition

Read word
from 1/O
Module

1’10 — CPU

Write word

into memory

CPU — memory

Next instruction
(b) Interrupt-driven I/O

PU —» DMA
Do something
== Palse

Issue Read
block comman
to 1O module

Read status
of DMA
module

- == Interrupt

DMA — CPU

Next instruction

(c) Direct memory access

73 Waada'aah

FFdfLo LD

BSOS a0

Outline of OS Intensive Introduction Classes

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

* We have presented till now:

Definitions of the OSs, Benefits of the OS to users and application programs,

Computer-System Organization and Operation, Different types of OSs, the Major OS Issues,
Operating System Services, Different views of the OS,

Main Goals of OS, Supporting of Multi-processing by OS: why?

Requirements of Multi-processing (HW and SW support), Multiprocessor Systems (Tightly and
loosely coupled, symmetric and asymmetric mode of coupling),

Distributed vs. Network OSs, Clustered systems, and why do we support clustering?
Computing models: Client-server, P2P, Grid-computing, Cloud-Computing,

Fundamental components of the OS; i.e. Process Management, Memory Management, File
Management, I/O Management, Mass-Storage Management, Command-Interpreter,

Protection & Security components of the OS, Protection of the CPU and Memory as hot
resources. Storage Hierarchy, Consistency and Coherency support by the OS,

Dual-Mode Operation of the OS, Privileged Instructions,

Interrupts and Exceptions definitions.

Reasons of Interrupts/Exception, Interrupts and Exceptions Handling.

I/O Handling Methods (Synchronous/blocking and Asynchronous/non-blocking)
I/O Data Transfer Techniques (Polling, Interrupt, Direct Memory Access)

We are going to present today:

System Calls and System Programs, Handling a System Call, Passing System Call Parameters
to the OS, Processes Communication Models,

Operating system Design Issues, Operating system Design goals, Different ways of structuring
the operating systems, Operating System Implementation, System Generation (SYSGEN)

74 Waaaa0m

FFdfLo LD

Foor L@ sr

System Calls
BSaaaah

system which the process itself is not allowed to do.

routines, memory allocate & free routines) by user’s programs.
System calls in fact, are treated as a special case of interrupts.

e.g., I/O instructions for devices.
Programs that make system calls called "system programs"

System programs were traditionally coded in assembly language but
by C, C++, and Java Programming languages.

Mostly accessed by programs via a high-level Application Program
rather than direct system call use.

for the Java virtual machine (JVM).

System calls allow user’s processes to request some services from the operating

A System call: Provides a "direct access" to OS services (e.g., file system, 1/O

System calls execute instructions that control the resources of the computer system,

currently written

Interface (API)

Three most common APIs are Win32 API for Windows, POSIX API for POSIX-based
systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API

| applicatiomn |

r
) ———

Wi 3T

L

FoNI g 1§

Wi AZ 1D s |

r

A —— o) e ——

swsbarrr ool

L

1l satacw ay

OPeratime Sy St |

Dr. Tarek Helmy, KFUPM-ICS

WA i mndowe s

FFdfLo LD

75 Wadd'amh

BSOS a0

System Programs

Foor L@ sr

The system programs are a set of utility programs to perform some tasks, such as:

File management - Create, delete, copy, rename, print, dump, list, and generally
manipulate files and directories.

— Status information

« Asks the system for info. i.e. date, time, amount of available memory, disk
space, number of users

— Others provide detailed performance, logging, and debugging information
— File modification

» Text editors to create and modify files

« Special commands to search contents of files

Programming-language support - Compilers, assemblers, debuggers and
interpreters

Program loading and execution- Absolute loaders, linkage editors, and overlay-
loaders, debugging systems for higher-level and machine language

Communications - Provide the mechanism for creating virtual connections among
processes, users, and computer systems (http, ftp, telnet, ...)

— Allow users to send messages to one another’s screens, browse web pages,
send electronic-mail messages, log in remotely, transfer files from one machine
to another

Dr. Tarek Helmy, KFUPM-ICS 76 WaaaaTah

FFdfLo LD

BSOS a0

Types of System Calls: Windows & Unix

Process
Control

Foor L@ sr

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Dr. Tarek Helmy, KFUPM-ICS

Windows

CreateProcess ()
ExitProcess ()
WaitForSingleObject ()

CreateFile ()
ReadFile ()
WriteFile ()
CloseHandle ()

SetConsoleMode ()
ReadConsole ()
WriteConsole()

GetCurrentProcessID()
SetTimer ()

Sleep()

CreatePipe ()
CreateFileMapping()
MapViewOfFile ()

SetFileSecurity ()
InitlializeSecurityDescriptor ()
SetSecurityDescriptorGroup()

Unix

fork()
exit ()
wait ()

open{()
read ()
write ()
close ()

ioctl ()
read ()
write()

getpid O
alarm{()
sleep()

pipe O
shmget ()
mmap ()

chmod ()
umask ()
chown ()

77 WAl d'aEh

FFdfLo LD

BSOS a0

Example of System Calls

Foor L@ sr

source file

« System calls sequence to copy the contents of one file to another file.

Dr. Tarek Helmy, KFUPM-ICS

p‘ destination file

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

€ Example System Call Sequence)

FFdfLo LD

78 Wad d'amh

Handling a System Call

BSOS a0

— User’s process makes a system call by executing a
system call privileged instruction.

— Hardware resets the mode-hit to O and switches to

Foor L@ sr

kernel mode.

— OS saves the state of user’s process.

— OS identifies the system call (branch to case
statement in system code).

— Switch to a service routine based on the
associated system call number.

— OS executes the service routine.

— OS restores the state of user’s process by loading
its parameters from [PCB].

— Switches to the user mode by setting the mode bit.

— Resume executing the user’s process.

Dr. Tarek Helmy, KFUPM-ICS

SC17?

Address of SR 1

A 4

Service
Routine 1

SC 2?

Address of SR 2

A 4

Service
Routine 2

A

SC 3?

Address of SR 3

A 4

Service
Routine 3

A

79 Wada'aTh

FFdfLo LD

A Passing System Call Parameters to the OS

« Three methods are used to pass system call parameters to the OS:-

1. System call parameters stored in registers

Foor L@ sr

* |In some cases, may be more parameters than registers

2. System call parameters stored in a block, or table, in memory,

and address of the block passed as a parameter in a register
« This approach taken by Linux and Solaris

3. System call parameters placed, or pushed, onto the stack by

the process and popped off by the OS.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 0 WMaaadaEm

Parameter Passing via Table

BRGS0 %
|
®| The methods to pass parameters between a running program and the OS.
ol
-
. |
3 . X
| :
register
X: parameters
for call
—™| use parameters code for
load address X / from table X system
system call 13 - - call 13

user program

operating system

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS Baaaaah

Example of Standard API

ERSaaaa%w
L
o . : o : : :
3 » Consider the ReadFile() function in the Win32 API—a function for reading from a
3 file
4 return value
o
‘ l
BOOL ReadFile ¢ (HANDLE file, N
LPVOID buffer,
T DWORD bytes To Read, | parameters
LPDWORD bytes Read,
LPOVERLAPPED ovl) ;

function name —

« A description of the parameters passed to ReadFile()
— HANDLE file—the file to be read
— LPVOID buffer—a buffer where the data will be read into and written from
— DWORD bytesToRead—the number of bytes to be read into the buffer
— LPDWORD bytesRead—the number of bytes read during the last read
— LPOVERLAPPED ovl—indicates if overlapped I/O is being used

« What is the reasonable way of passing these parameters to the OS?

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS Baaaaah

Processes Communication Models

BSOS a0

« Processes communicate with each other using direct message
passing by sending/receiving messages through the OS kernel, or
through shared memory .

Foor L@ sr

process A M process A

Pl &
shared g
—

Blioieizsis B M process B

kernel M kernel L

2

. |

(a) (b) 3
Message Passing Shared Memory :
W

]

Dr. Tarek Helmy, KFUPM-ICS Baaaaah

e —— Operating System Design Issues

 As we have seen, the operating system consists of many components,
so the designers need to think of:

— How do we organize all of them?
— Where do they exist?
— How do they cooperate together?

* Answering these questions is a massive software engineering and
design issue.

« What are the important software characteristics of an OS the designer
should care?

— Correctness, simplicity, and completeness,

— Efficient performance: maximally utilize the resources
— Extensibility and portability,

— Suitability for distributed and parallel systems,

— Compatibility with existing systems,

— Security and fault tolerance,

— .. etc.

Foor L@ sr

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 84 Wwaaaamh

BSOS a0

More Design Issues

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

- Flexibility

It should be easy to add and remove functional modules from the operating
system. This is the idea of microkernel operating system. In a microkernel
operating system, it provides minimal services:

* Inter-Process communications (IPC)

* Some memory management

« Alimited amount of low-level process management and scheduling.
* Low-level input/output

These basic services are provided in kernel just because it is too expensive
to provide them anywhere else.

. Reliability

With distributed system, it is possible to provide higher reliability because
some nodes can perform functions for the failed nodes.

. Performance

With distributed systems, one expects better performance.

. Scalability

The system design should be able to expand to large number of
processors, not just a few.

8 WA aJdaan.

FFdfLo LD

OS Design Goals
S aaaanm

d The OS is a kind of SW package and has to pass the Software
Development Life Cycle, i.e. Requirements, Design, Implementation,
Integration, Deployment and Maintenance phases.

« The OS design will be affected by the choice of the HW and the type of the

system (Batch OS, Time shared OS, Single user OS, Multi-user OS, Real
time OS, Distributed OS, or what?).

« The first problem in designing the system is to define the goals and
specification of the system.

Foor L@ sr

« User’s goals: OS should be convenient to use, easy to learn, reliable, safe,
multi-purpose, and fast.

« System’s goals: OS should be easy to design, implement, and maintain, as

well as flexible, reliable, error-free, and efficient.
* Next, we will present different ways of structuring the operating systems.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 6 Waaaaamh

Monolithic Structure of OS: i.e. Unix

BSOS a0

« The monolithic approach defines a high-level virtual interface over the
hardware, with a set of primitives or system calls to implement OS services
such as process management, concurrency, and memory management in
several modules that run in supervisor mode.

« Kernel: Everything below the system-call interface and above the physical
hardware.

— Provides file system, CPU scheduling, memory management, and other
OS functions through system calls.

* Traditional UNIX OS versions were built as a monolithic kernel.

Foor L@ sr

Applications

(the users)

User space
I N N N N O . I I O O O .

Kernel space

Systemn Call Interface I

Frocessor Inter-Frocess

Memory Manager AR
4 e] Scheduler Communication
) e

shells and commands
compilers and interpreters
system libraries

system-call intetface to the kernel

signals terminal file system CPU scheduling
handling swapping block /O page replacement

character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

Kernel
A

kernel interface to the hardware

Input/Cutput Metwork

Hlotidall Manager Manager

terminal controllers device controllers | memory controllers
terminals disks and tapes physical memory

BFfL L L F

Dr. Tarek Helmy, KFUPM-ICS L RSN R -

Monolithic Kernels

BSOS a0

 Major advantage:

— Cost of module interactions is low (procedure/function/method call)

Foor L@ sr

« Disadvantages:

— Hard to understand,

— Hard to modify or to maintain,

— Unreliable (no isolation between system modules)
 What is the alternative?

— Find a way [Layering] to organize the OS in order to simplify its design

and implementation.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 88 WMaaaammh

Microkernel OS Structure

BSOS a0

 Moves as much as possible from the kernel into “user” space
« Communication takes place between user’'s modules using message passing
— Provides only small number of services
« Attempt to keep kernel small and scalable
— High degree of modularity
« Extensible, portable and scalable
— Increased level of inter-module communication
« Can degrade system performance
 Mac and BSD (Berkeley Standard Distribution) OSs are examples.

I Applications '

Foor L@ sr

I Swyosterm ol Imtserface '
i Frococsessor e il =
| Filke Swystem I | Schaeduler I | W anager I

Li=er =S
I I I I I I I L] L] L] L] I I I
HFermnel space

I INnter-Process Corrumnunicaticon '

| FM=rmory Mamnsoger I | Synchronisation I

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 9 Waaadaamh

Microkernel OS Structure

BSOS a0

* Benefits:
— Easier to extend a microkernel,
— Easier to port the operating system to new architectures,
— More reliable (less code is running in kernel mode),

« Disadvantages:

— Performance overhead of user space to kernel space
communication.

Foor L@ sr

application environments
and common services

! l

BSD

kernel

environment
| Mach

Mac OS X Structure
Dr. Tarek Helmy, KFUPM-ICS 900 WMaaaaahm

FFdfLo LD

BSOS a0

Layering OS Structure

* The layering approach means:

Foor L@ sr

 Layered Systems

layer N
user interface

layer 1

layer O
hardware

Dr. Tarek Helmy, KFUPM-ICS

— Implement the OS components as a set of layers,
— Each layer acts as a ‘virtual machine’ to the layer above.

— Layer 1: Responsible for the multiprocessing aspect of the
operating system. It decides which process to be allocated to the
CPU (Scheduling). It deals with interrupts and performs the context
switches when a process change is required.

I User Applications '

------ |

User space

Kernel space

lnpuUOutput Managemgni

$ t v

Mess=age Interpreter

Memory Management

FFdfLo LD

Processor écheduli'ng

] o da'aah

Layering OS Structure
BSaaaah

Layer 2: Concerns with allocating memory to processes.

— Layer 3: Deals with inter-process communication and

Foor L@ sr
I

communication between the OS and the console.

— Layer 4: Manages all I/0 between the devices attached to
the computer. This includes buffering information from the

various devices.
— Layer 5: Where the user programs store.

— Layer 6: Where the overall control of the system (called

the system operator).

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 92 Waaaaanm

Layering OS Structure: i.e. MS Windows

BSOS a0

Foor L@ sr

application program

4
resident system program ’

MS-DOS device drivers

ROM BIOS device drivers

Dr. Tarek Helmy, KFUPM-ICS

PPy L L

Baagaa30%

Layering Advantages and Disadvantages

BSOS a0

Advantages:
— Each layer can be tested and verified independently,

— Layering eases maintenance, developing, and updating of
system,
— Explicit structure allows identification, relationship of complex
system’s pieces.
« Disadvantages:

Foor L@ sr

* Disjunction between modularity and reality

— Systems modeled as layers, but not really built that way.
* Poor performance

— Each layer crossing has overhead associated with it.
« Strict layering isn’t flexible enough

— A layer can communicate only with the lower layer.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 99 Waaaa@ah

BSOS a0

Modules Operating System Structure

Foor L@ sr

core Solaris
miscellaneous kernel - |§tzcriﬁl(3:|§||5
modules y

« Most modern operating systems implement the kernel as modules

Uses object-oriented approach,

kernel does not have to implement message passing since
modules are free to contact each other directly.

Each core component is separate,
Each talks to the others over known interfaces,
Each is loadable as needed within the kernel,

« Overall, similar to layers but with more flexibility

scheduling

device and classes
bus drivers

STREAMS executable
modules formats

Dr. Tarek Helmy, KFUPM-ICS O WMaaaaamhm

Solaris Modular Approach

FFdfLo LD

Foor L@ sr

BSOS a0

Virtual Machines

Creating software copies of the processor (the capability to execute
Instructions) and the memory (the capability to store information, each

constitutes a Virtual Computer (VC).

The resources of the physical machine are shared. Virtual devices are sliced

out of the physical ones. Virtual disks are subsets of physical ones.

Useful for running different OS on the same machine.
To provide an interface or resource that differs from that of the lower levels.
Primarily used for cross OS compatibility (portability of code), i.e. Java VM.

Protection is excellent, but no sharing possible.

Partition 1

Multiple address spaces

processes A

processes
10086 binary compatible

processes processes

Partition 2

Muitiple address spaces

Process

1

Process
2

100% binary compatible

Partition 3

Muttiple address spaces

GUl

100%% binary compatible

User Mode

3

kernel

hardware

(@)

programming/
»~ interface

.

.

kernel

kernel

kernel

VM1

VM2

VM3

virtual-machine
implementation

hardware

()

Dr. Tarek Helmy, KFUPM-ICS

=
P=3
g Supervisor Mode

Virtualization
Virtualization

Hardware (Muiticore CPU)

Virtualized OS architecture on a Multicore processor.

06 WA d daTh

FFdfLo LD

Java Virtual Machine: Example

BSOS a0

Java Virtual Machine:
. Mediates between the application and the underlying platform:
. Converts the application’s byte code into machine-level code.

. Handles tasks such as managing the system memory, providing
security against malicious code, and managing multiple threads of
program execution.

. Thus: Compiled Java programs are platform-independent, byte-codes
executed by a Java Virtual Machine (JVM).

Foor L@ sr

Java Code (.jawva)

JAtAC ¢ The Java Virtual
 compiler Machine allows
ﬁ/ Java code to be

Byte Code (-class) | portable between 5

| various hardware 5

1 4 1 and OS .

IV Vv IV platforms. 3

3 3 1 4

Windows | Lirux Mac | u

L

Dr. Tarek Helmy, KFUPM-ICS B agaaanhk

Advantages/Disadvantages of Virtual Machines

BSOS a0

Advantages:

« The virtual-machine concept provides complete protection of
system resources since each virtual machine is isolated from all
other virtual machines.

Foor L@ sr

Disadvantage:

« The isolation, however, permits no direct sharing of resources
which is against sharing of the resources to maximize their
utilization.

« The virtual machine concept is difficult to implement due to the
effort required to provide an exact duplicate to the underlying
machine.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS o8 WA aaaah

System Implementation

BSOS a0

« Traditionally OSs have been written in assembly language, now they are
often written in Higher-Level Languages such as C, C++, Java.

The advantages of using HLL in writing the OSs are:
— Can be written faster.
— Is more compact.
— |Is easier to understand and debug.

— An OS is far easier to port (move to some other hardware) if it is
written in a high-level language.

 Ex. Old OSs were written in the assembly language of some processors
and that means it is available only for that processor’s family while the
Unix is written in C and it is available on a different CPUs.

Foor L@ sr

 The major disadvantages are:
— Reduced speed and increased storage requirements.

* In many OSs the critical modules (CPU scheduling, memory
management) can be written in assembly (LLL) and replace the HLL to
iImprove the performance of the OS.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 9 WaaaaTanm

BSOS a0

System Generation (SYSGEN) Module

Foor L@ sr

Dr. Tarek Helmy, KFUPM-ICS

OS is designed to run on any machine; the OS must be configured for each specific
computer site, this process is known as system generation. The OS is often distributed
on CDs and to generate a system, we use:

SYSGEN Module obtains information concerning the specific configuration of the
hardware system, it may ask the system operator to define the HW or probes the HW
directly. SYSGEN must determine:

— What type of the CPU? Type of instruction set, floating point arithmetic, ..

— How much memory is available? Some OS will detect the amount of memory by
referencing the memory locations sequentially until getting into illegal address.

— What devices are available? The OS needs to know how to address each device,
the characteristic of the device, etc.

— What OS options are desired? Like how many buffer and of which size should be
set? The type of CPU scheduling algorithm, the maximum no. of process to be
supported? etc.

— Plug and play feature.
After the OS is generated, it must be available for the use by the HW through:

Bootstrap program/BIOS: Code stored in ROM that is able to locate the kernel, to load
it into memory, and to start its execution.

Booting: The procedure of starting a computer by loading the fundamental parts
(kernel) of the OS.

10 o daah

FFdfLo LD

At the End

BRGS0 %

|

|

: . We've completed our intensive introduction of the OS.

: . This was a satellite picture about the concepts and principles of the OS.
u . From now, we’'ll be at the ground level, looking at each component of the

OS in more detalils.

. We will conduct a quiz soon about the introductory classes of the OS.

Please prepare your self for that.

. Your references for the introductory sessions are:

— Lectures’ slides

- Text book chapters 1, 2 and parts of chapters 3 and 13.

FFdfLo LD

Dr. Tarek Helmy, KFUPM-ICS 10 Waaaa@amh

BSOS aaaah

FoLe Lo Fllr

Dr. Tarek Helmy, KFUPM-ICS

The End!!

10 WMaadaTh

FF L L L

