
Dr. Tarek Helmy, ICS-KFUPM

Ch. 6 Process Synchronization

Dr. Tarek Helmy El-Basuny

Operating Systems ICS 431

Dr. Tarek Helmy, ICS-KFUPM

This chapter discuss:

 Concurrent Processing.

 Why Process Synchronization?

 Producer-Consumer Problem

 How do processes work with resources that must be shared between them?

 Atomic Operation

 The Critical-Section

 Critical section Implementation

 Evaluating synchronization algorithms of a critical section

 Different algorithms to Synchronize two Processes enter of Critical Section.

 Dangers of handling the Critical Section Problem

 Synchronization Tools

 Semaphores

 Incorrect usages of Semaphores

 Classical Problems of Synchronization

 Monitors

 Synchronization in different OSs

Ch. 6 Process Synchronization

2

Dr. Tarek Helmy, ICS-KFUPM

Concurrent Processing

• In a single-processor with multiprocessing system, processes are

interleaved in time to yield the appearance of simultaneous execution. Even

though actual parallelism is not achieved and there is overhead in switching

between processes, interleaved executions provide major benefits in

processing efficiency and in program structures.

• In a multi-processor systems, it is possible not only to interleave the

execution of processes but also to overlap them. Although it might seem

that interleaving and overlapping present different problems, both

techniques can be viewed as examples of concurrent processing, and both

present the same problems.

3

A B C

B A A C B C B Multiprocessing

A

B

C
Parallel Processing

Dr. Tarek Helmy, ICS-KFUPM

Background- Concurrency

 In order to cooperate, processes must be able to:

 Communicate with one another

 Passing information between two or more processes

 Synchronize their actions

 Coordinating access to shared resources

 Hardware (e.g., printers, drives), Software (e.g., shared

code)

 Files (e.g., data), Variables (e.g., shared memory

locations)

 Concurrent access to shared data may result in data

inconsistency.

 Maintaining data consistency requires synchronization

mechanisms to ensure the orderly execution of cooperating

processes.

 Synchronization itself requires some form of communication

4

Dr. Tarek Helmy, ICS-KFUPM

• Concurrent execution without Synchronization can cause two major problems:

• Inconsistency due to Race Condition

– When two or more cooperating processes access and manipulate the same data

concurrently, and

– The outcome of the execution depends on the order in which the access takes

place.

• Counter = 0; // global variable

• Thread 1 does Counter++

• Thread 2 does Counter-- // “at the same time”

• What is the order of values of Counter ?

– 0 : 1 : 0?

– 0 : -1 : 0?

• Deadlock

– When two or more waiting processes require shared resource for their continued

execution,

– But the required resources are held by other waiting processes.

• Let us return to the bounded buffer [producer-consumer] problem we presented before.

Why Process Synchronization?

shared int x =3;

process_1 () {

x = x +1;

print x; }

process_2 () {

x = x -1;

print x; }

5

Dr. Tarek Helmy, ICS-KFUPM

Producer-Consumer Problem

• Example of Cooperating processes that need to be synchronized:

– Producer process produces information that is consumed by a

Consumer process.

• We need buffer of items that can be filled by producer and emptied

by consumer.

– Unbounded-buffer places no practical limit on the size of the

buffer. Consumer may wait, producer never waits.

– Bounded-buffer assumes that there is a fixed buffer size.

Consumer waits for new item, producer waits if buffer is full.

– Producer and Consumer must be synchronized. How?

6

Dr. Tarek Helmy, ICS-KFUPM

Producer-Consumer Problem

7

Dr. Tarek Helmy, ICS-KFUPM

A Producer process "produces" information

"consumed" by a Consumer process.

The Producer Consumer Problem

item nextProduced;

while (1) {

while (counter ==

BUFFER_SIZE);

/*do nothing*/

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

/*incremented every time we

add element*/

counter++;}

item nextConsumed;

while (1) {

while (counter == 0);

/*do nothing*/

nextConsumed = buffer[out];

out = (out + 1)%

BUFFER_SIZE;

/*decremented every time we

remove element*/

counter--;

}

#define BUFFER_SIZE 10

typedef struct {

 DATA data;

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

PRODUCER

CONSUMER

producer consumer

8

Dr. Tarek Helmy, ICS-KFUPM

Atomic Operation

 Definition: An atomic operation is the one that executes to

completion without any interruption or failure.

• Operations are often not “atomic”

– Example: x = x + 1 is not atomic!

• Read/Load x from memory into a register

• Increment register (x)

• Store register (x) back to memory

 An atomic operation has “an all or nothing” flavor:

 Either it executes to completion, or

 It does not execute at all, and

 It executes without interruptions.

9

Dr. Tarek Helmy, ICS-KFUPM

Although both the producer and consumer function well separately, they may not function well
when executed concurrently!!

we can show that by implementing the statement “counter++” in machine language as follows:
 register1 = counter

 register1 = register1 + 1

 counter = register1

 The statement “counter--” implemented in machine language as follows:

 register2 = counter

 register2 = register2 - 1

 counter = register2

Where register 1, 2 are local CPU registers.

At a micro level, the following scenario could occur using this code. Assume counter is initially 5.

T0; Producer Execute register1 = counter register1 = 5

T1; Producer Execute register1 = register1 + 1 register1 = 6

T2; Consumer Execute register2 = counter register2 = 5

T3; Consumer Execute register2 = register2 - 1 register2 = 4

T4; Producer Execute counter = register1 counter = 6

T5; Consumer Execute counter = register2 counter = 4

The Producer Consumer Problem

?

1

0

Dr. Tarek Helmy, ICS-KFUPM

The Critical Section

• The previous example demonstrates a critical section: a memory
location, or part of the process code, or disk space which is shared by
n processes where all processes may be able to change stored
values.

• Critical sections are used frequently in an OS to protect data
structures (e.g., queues, shared variables, lists, …)

• Problem: how to ensure that only 1 process can change the value at
a time such that all processes know the current value.

• Critical sections must be protected so that they are mutually exclusive
of processor access. All code within the section executes atomically

11

Dr. Tarek Helmy, ICS-KFUPM

Critical Sections

• A critical section implementation must be:

• Correct/Mutual Execution: only 1 thread/process can

execute in the critical section at any given time.

• Efficient: Getting into and out of critical section must be

fast. Critical sections should be as short as possible.

• Concurrency control: A good implementation allows

maximum concurrency while preserving correctness.

• Flexible: A good implementation must have as few

restrictions as practically possible.

12

Dr. Tarek Helmy, ICS-KFUPM

Mutual Exclusion: Disabling Interrupts

 The critical section problem could be solved simply in uni-processor

environment if:

 Interrupts are disabled while a shared variable is being accessed.

 Without interrupts no process context switching can occur and this supports

mutual exclusion.

 Somewhat dangerous: one process can hold up the CPU forever

 Endless loop

 Waiting for resources

 Efficiency of execution may be degraded

 Processor has limited ability to interleave programs

 Used in special-purpose systems with limited hardware

• In Multiprocessor system

– Disabling interrupts on one processor will not guarantee that other

processors can be interrupted and that means mutual exclusion can not

be supported.

– Can we disable interrupts in all processors?

13

Dr. Tarek Helmy, ICS-KFUPM

A Critical Section environment should contain:

Entry Section Code requesting entry into the critical section.

Critical Section Code in which only one process can execute at

any one time.

Exit Section The end of the critical section, releasing or

allowing others to in.

Remainder Section Rest of the code after the critical section.

Critical Section

Entry code CS code Exit code RS code

Process

• do{

• entry section

• critical section

• exit section

• reminder section

• } while (TRUE)

14

Dr. Tarek Helmy, ICS-KFUPM

Evaluating Critical Section Solution

A solution to the Critical Sections (CS) must satisfy:

1. Mutual Exclusion: At most, one process/thread is

allowed to execute in a shared CS.

2. Progress: If a process/thread wishes to execute its

CS (and no other processes/threads are currently

executing in it) then the processes which are allowed

to decide if this process/thread gains entrance are

those not currently executing their remainder section.

3. Bounded waiting: If a process/thread i is in entry

section, then there is a bound on the number of times

that other processes/threads are allowed to enter the

critical section before process/thread i’s request is

granted.

1. P1 wants to enter CS

2. Any Pi enters its CS at most N times after P1’s
request

3. After N entries, P1 must enter its CS

4. N must be bounded

Critical Section

1. only one process

When exiting from CS

2. Pick up a process to enter

3. Delta time exists

When coming and entering CS

15

Dr. Tarek Helmy, ICS-KFUPM

Initial Attempts to Solve the CS Problem

• We restrict our attention to the algorithms that are applicable to only

two processes at a time:

• Two processes P0 and P1 (also noted as Pj and Pi)

 do {

 entry section

 critical section

 exit section

 reminder section

 } while (True);

• Processes may share some common variables to synchronize their

actions.

16

Dr. Tarek Helmy, ICS-KFUPM

Algorithm 1

• Uses turn variable to alternate entry into critical sections between
two processes.

int turn;

initially turn = 0

turn = i  Pi can enter its critical section

 Process Pi

 do {

 while (turn = j) ;

 critical section

 turn = j;

 remainder section

 } while (True);

17

Dr. Tarek Helmy, ICS-KFUPM

• This algorithm ensures that only one process can access the CS at a time

(mutual exclusion)

• The process of entering the critical section only tests the shared turn variable.

• Missing the other processes set just delays its entry

• It does not satisfy the progress requirement.

• The algorithm does not retain the state of each process in order to get around

this problem. It remembers only which process is allowed to enter the CS.

– If turn=0, P0 is executing its remainder section and P1 is ready to enter

the CS, it is denied since turn<>1

– However, P0 cannot agree to turn over the CS to P1 since it is currently

in its remainder section

– Pi, Pj, Pi, Pj… strict alternation of processes

– Pi leaves, Pj busy with long I/O, Pi comes back to CS-entry;

– No one in the CS, but Pi has to wait until Pj to come to the CS.

– What if Pj never comes back to CS ????

Algorithm 1

18

Dr. Tarek Helmy, ICS-KFUPM

– Shared Variables

• var flag: array (0..1) of Boolean;

 initially flag[0] = flag[1] = false;

• flag[i] = true  Pi ready to enter its critical section

– Process Pi
 repeat
 flag[i] := true;
 while flag[j] do no-op;
 critical section
 flag[i]:= false;
 remainder section
 until false

Can block indefinitely…. Progress requirement not met.

Algorithm 2 (saying I’m using)

19

Dr. Tarek Helmy, ICS-KFUPM

Algorithm 3: Combining Alg.1 & Alg. 2

• By combining the ideas behind Alg.1 and Alg. 2, we can ensure all 3

properties

• Two process solution

• Processes share both flag and turn variables

• Two shared variables:

– int turn;

• turn indicates whose turn it is to enter the critical section

– Boolean flag[2]

• flag[i] = true implies that process Pi is ready

• Each processes sets a flag to request entry. Then each process toggles a

bit to allow the other in first.

20

Dr. Tarek Helmy, ICS-KFUPM

• Uses flag variables to show requests by
processes wishing to enter their critical
sections.

• Process checks the flag of another
process and doesn’t enter the critical
section if that process wants to get in.

• Flag array[0..1] of Boolean;

• Flag[0] and Flag[1] are initialized to
false

• If Flag[i] is true then Pi is ready to enter
the CS

– Do {
 flag[i] = true;

 turn=j;

/*check to see that Pj is false [not ready]*/

while (flag[j] && turn==j);
 [critical section]

/*if Pj is true then Pi should wait*/

 flag[i] = false;
 [remainder section]

 } while (True);

• Still accomplishes mutual

exclusion

• But does not accomplish

progress

 T0: P0 sets flag [0] = true

 T1: P1 sets flag [0] = true

– If both flag[0] and flag[1]

are true simultaneously

(which could occur if both

processes decide to

access the CS at about

the same time) then they

both wait forever.

21

Algorithm 3: Combining Alg.1 & Alg. 2

Dr. Tarek Helmy, ICS-KFUPM

while (true) {

 flag[0] = TRUE;

 turn = 1;

 while (flag[1] && turn == 1);

 CRITICAL SECTION

 flag[0] = FALSE;

 REMAINDER SECTION

}

while (true) {

 flag[1] = TRUE;

 turn = 0;

 while (flag[0] && turn == 0);

 CRITICAL SECTION

 flag[1] = FALSE;

 REMAINDER SECTION

}

22

Algorithm 3: Combining Alg.1 & Alg. 2

Dr. Tarek Helmy, ICS-KFUPM

Algorithm 3 Evaluation

• Mutual Exclusion is maintained because turn will allow only

1 process access at a time

• Progress and bounded-waiting are maintained because a

process i, is only denied access to the CS while both turn

<> i (I.e. turn = j) and flag[i] is false.

• Flag[i] will be true when the process wants to enter the CS

and if turn <> i, process i must only wait until process j

terminates with the CS (which must happen in a finite

amount of time)

23

Dr. Tarek Helmy, ICS-KFUPM

Lock

• Suppose we have some sort of implementation of a lock.

– Lock.Acquire() – wait until lock is free, then grab

– Lock.Release() – Unlock, waking up anyone waiting

– These must be atomic operations – if two threads are waiting for

the lock and both see it’s free, only one succeeds to grab the

lock

• Then, our critical section problem is easy:

 lock.Acquire();

Critical section

 lock.Release();

• Once again, section of code between Acquire() and Release()

called a “Critical Section”

24

Dr. Tarek Helmy, ICS-KFUPM

Mutual Exclusion: HW Instructions

• Special machine (atomic) instructions that are available on many

systems can be used to solve the critical section problem.

– Performed in a single instruction cycle

– Not subject to intrusion from other instructions

– i.e. Reading and writing

– i.e. Reading and testing

• These instructions can do two steps indivisibly [atomically]

– Test_and_set: Test a value; if it is false set it to true, else leave

it True

– Exchange: Swap the values of two variables

• Often in combination with interrupts

• Sometimes used as basis for OS synchronization mechanisms

25

Dr. Tarek Helmy, ICS-KFUPM

• The important characteristic of the T&S instruction is that it is

executed atomically. i.e. it is un-interruptible; no other process can

access the memory location until the instruction is finished. It is used

to put a “lock” on a memory word.

• Implementation of Mutual Exclusion with Test-and-Set

• A physical entity often called a lock byte must be used to represent

the resource.

• There should be a lock byte associated with each shared

database/device.

• lock byte = 0 means the resource is available, lock byte = 1 means

the resource is in use.

• Before operating on a shared resource, a process must perform the

following actions:

1. Examine the value of the lock byte, (Test)

2. Set the lock byte to 1, (Set).

3. If the original value was 1, go back to step 1.

• T & S can be used to implement mutual exclusion as follows:

Mutual Exclusion: Test & Set Instruction

26

Dr. Tarek Helmy, ICS-KFUPM

Boolean TestAndSet (Boolean &lock) {
 Boolean tmp = lock;
 lock = true;
 return tmp; }

When calling TestAndSet(lock)

– if lock = False before calling TestAndSet

• It is set to True and False is returned

– if lock = True before calling TestAndSet

• It is set to True and True is returned

Shared data:
 Boolean lock = False;

Process Pi do {

 while (TestAndSet(lock) = True); // recourse is in use (do nothing)

 -- critical section --

 lock = False; // means the resource became available

 -- remainder section--

 } while (1);

• This algorithm satisfies the mutual exclusion and progress requirements, but not the bounded-
waiting requirement.

• It may be sufficient for synchronization, but wasteful of processor resources.

• The blocked process doesn’t really stop executing, instead it continually loops, testing the lock
byte and waiting for it to change to 0 (Busy Waiting).

Mutual Exclusion with Test-and-Set

27

Dr. Tarek Helmy, ICS-KFUPM

Mutual Exclusion with Swap

(Atomically swap two variables)
 void Swap(Boolean a, Boolean b) {

 Boolean temp = a;

 a = b;

 b = temp; };

• After calling swap,

– a = original value of b

– b = original value of a

• Shared data (initialized to false):
Boolean lock = false; /* shared variable - global */
// if lock = 0, door open, if lock = 1, door locked

• Private data
Boolean key_i = true;

• Process Pi

 do {

 key_i = true; /* not needed if swap used after CS exit */

 while (key_i = true)
 Swap(lock, key_i);

 critical section /* remember key_i is now false */

 lock = false; /* can also use: swap(lock, key_i);*/

 remainder section

 }

• Declaring a global

Boolean variable lock,

initialized to false.

• In addition, each process

has a local Boolean

variable key.

• Mutual Exclusion: Pass if

key = T or waiting[i] = F

• Progress achieved

because exit process

sends a new process in.

• Bounded Waiting

achieved because each

process wait at most n-1

times

28

Dr. Tarek Helmy, ICS-KFUPM

• Advantages

– Applicable to any number of processes on either a single

processor or multiple processors sharing main memory.

– It is simple and therefore easy to verify

– It can be used to support multiple critical sections

• Disadvantages

– An explicit flush of the write to main memory

– Busy-waiting consumes processor time, while a process is in

CS, others should loop in the entry sections.

– Starvation is possible when a process leaves a critical section

and more than one process is waiting. Who is next?

– Deadlock - If a low priority process has the critical region and a

higher priority process needs it, the higher priority process will

obtain the processor to wait for the critical region.

Mutual Exclusion HW/Instructions

29

Dr. Tarek Helmy, ICS-KFUPM

Busy Waiting/Spin-Lock

• Main disadvantage of the mutual exclusion solutions shown in the

previous algorithms is BUSY WAITING or SPIN-LOCK.

• Busy Waiting

– Process is continuously looping in the entry section to see if it

can enter the critical section.

– Process can do nothing productive until it gets permission to

enter its critical section – wastes CPU cycles.

• Most mutual exclusion solutions result in “busy waiting/Spin-lock”

• To overcome this we can use a wait and signal mechanism.

• Spin-Lock in multiprocessor system is useful as it minimizes the

context switch process.

30

Dr. Tarek Helmy, ICS-KFUPM

We can modify the lock mechanism as follows to avoid busy waiting:

 (I) Examine the value of the lock byte.

 (ii) Set the lock byte to 1

 (iii) If the original value was 1, call Wait (X).

To unlock:

 (I) Set lock byte to 0

 (ii) Call Signal (X).

Wait and Signal are primitives of the traffic controller.

• A Wait (X) sets the process’ PCB to the blocked state and links it to the lock byte X.

• Another process is then selected to run by the scheduler.

• A Signal (X) checks the blocked list associated with the lock byte X;

• If there are any processes blocked, waiting for X, one is selected and its PCB is set

to the ready state.

• Eventually, the scheduler will select this newly “ awakened” process for execution.

Mutual Exclusion with Wait and Signal

31

Dr. Tarek Helmy, ICS-KFUPM

Semaphore

• Synchronization tool that does not require busy waiting.

• An abstract data type, non-negative integer

• Synchronization operations are atomic.

– Operation P = wait

– Operation V = signal

• Use

– N-process critical section problems

– Synchronization problems

• Semaphore S – non-negative integer variable

 Semaphore S; // initialized to 1

acquire(S);

criticalSection();

release(S);

• When one process modifies the semaphore value, no other process can
simultaneously modify it.

• The testing of a semaphore value and either increment or decrement it should be
done atomically.

SemaphoreP() (wait)
If sem > 0, then
decrement sem by 1
Otherwise “wait” until
sem > 0 and then
decrement

SemaphoreV() (signal)
Increment sem by 1
Wake up a thread waiting
in P()

P V
Value= 0

32

Dr. Tarek Helmy, ICS-KFUPM

Semaphore Implementation

• Each semaphore has an integer value and a list of associated processes

• When a process blocks/waits itself on a semaphore, it is added to a queue of
waiting processes.

• The signal operation [from other processes] on a semaphore restarts a

process from the queue and wakes the process up by the wakeup operation.

• Define a semaphore as a record

 type semaphore = record

 value: integer

 L: list of process;

 end;

Process 1 Process 2

Process 3

Process 4

Process 5

P V

33

Dr. Tarek Helmy, ICS-KFUPM

Critical Section of N Processes

• We can use semaphores to deal with the n-process critical-section

problem.

• N processes share a semaphore mutex; // stands for mutual

exclusion) initially mutex = 1

• Process Pi:

do {

 wait (mutex);

 critical section

 signal (mutex);

 remainder section

} while (1);

• Shows use of semaphore to implement mutual exclusion.

• Semaphores can be used to solve various synchronization problems,

Critical section

Wait (mutex);

Signal (mutex);

34

Dr. Tarek Helmy, ICS-KFUPM

Implementation

• When a process executes wait and finds the semaphore value < 0, it blocks
itself rather than looping.

 wait (S):
 S.value--;

 if (S.value < 0) {

 add this process to the list;
 block;

 }

• Signal restarts a process using wakeup which moves a process from the wait
queue to the ready queue.

 signal (S):
 S.value++;

 if (S.value <= 0) {

 remove a process P from the list;
 wakeup(P);

 }

• block suspends the process that invokes it.

• wakeup(P) resumes the execution of a blocked process P.

• Block and wakeup are provided by the OS as basic system calls.

35

Dr. Tarek Helmy, ICS-KFUPM

Busy Waiting/Spin-Lock Solution

• Solution: When a process executes wait and finds the

semaphore value < 0, it blocks itself rather than looping

which transfers control to the scheduler that selects another

process to execute.

36

Dr. Tarek Helmy, ICS-KFUPM

Semaphore Usage - Example

P1 P2

 process 1 statements
since synch = 0,

must stay idle until

signal from P1

wait(synch); signal(synch);

received signal from P1
done executing

 process 2 statements

• Goal: Force P2 to execute after P1

• Using a common semaphore synch to synchronize the operations of

the two concurrent processes:

– Wait, signal utilized to delay P2 until P1 is done

– Synch initialized to 0

37

Dr. Tarek Helmy, ICS-KFUPM

Dangers of Handling the Critical Section Proble

m

• Solutions to the critical section problem may lead to:

– Starvation

– Deadlock

• Starvation: A process never gets a resource because the resource is

allocated to other processes

– Higher priority

– Consequence of scheduling algorithm

• Frequent solution: aging

– The longer a process waits for a resource, the higher its priority until

it eventually has the highest priority among the competing processes

• Deadlock: Two or more processes are waiting indefinitely for an event

that can be caused by only one of the waiting processes.

38

Dr. Tarek Helmy, ICS-KFUPM

Deadlock and Starvation with Semaphore

• Let S and Q be two semaphores initialized to 1

 P0 P1

 wait(S); wait(Q);

 wait(Q); wait(S);

  

 signal(S); signal(Q);

 signal(Q) signal(S);

• P0 is waiting for P1 to execute signal (Q)

• P1 is waiting for P0 to execute signal (S)

• Both processes are in a deadlock!

• Starvation: A process may never be removed from the semaphore queue in

which it is suspended.

– LIFO queue implementation.

39

Dr. Tarek Helmy, ICS-KFUPM

Two Types of Semaphores

• Counting semaphore: Integer value can range over an unrestricted domain.

i.e the one described before.

• Binary semaphore: Integer value can range only between 0 and 1.

– Can be simpler to implement depending on the underlying HW support.

– Used by 2 processes to ensure only one can enter critical section.

• We can implement a counting semaphore S with binary semaphores.

40

Dr. Tarek Helmy, ICS-KFUPM

Implementing Counting Semaphore S

• Can we implement a counting semaphore with binary semaphores? Yes

• Data structures: binary-semaphore S1, S2;

 int C:

• Initialization:

 S1 = 1

 S2 = 0

 C = initial value of the counting semaphore S

• wait operation on the counting semaphore S can be implemented as:
 wait(S1);
 C--;
 if (C < 0) {
 signal(S1);
 wait(S2);
 }
 signal(S1);
• signal operation on the counting semaphore S can be implemented as:

 wait(S1);

 C ++;

 if (C <= 0)

 signal(S2);

 else

 signal(S1);

41

Dr. Tarek Helmy, ICS-KFUPM

Incorrect using of Semaphores

• Although semaphores provide an effective mechanism for process synchronization,
their incorrect use can still result in timing errors that are difficult to detect.

• All processes share a semaphore variable mutex, which is initialized to 1.

• Each process must execute:

 wait (mutex); before entering

 critical-section

 signal (mutex);

• Suppose that a process interchange the order of wait and signal, i.e:

signal (mutex);

critical-section

wait (mutex);

• Suppose that a process replaces wait with signal, i.e:

signal (mutex);

critical-section

signal (mutex);

• Suppose that a process omits the wait or the signal or both: in this case either mutual
exclusion is violated or a deadlock will occur.

Several processes may be executing

their CS simultaneously

Deadlock may occur

42

Dr. Tarek Helmy, ICS-KFUPM

Process A Process B Process C

think(); think(); think();

draw_A(); draw_B(); draw_C();

Example Semaphores

• Three processes all share a resource on which

– One draws an A

– One draws a B

– One draws a C

• Implement a form of synchronization so that A B C appears in

this sequence.

43

Dr. Tarek Helmy, ICS-KFUPM

Example Semaphores

think();

draw_A();

think();

draw_B();

think();

draw_C();

A

C

B

?

No semaphores

44

Dr. Tarek Helmy, ICS-KFUPM

Example Semaphores

think();

draw_A();

think();

draw_B();

think();

draw_C();

A

C

B

No semaphores

Race

Condition !

45

Dr. Tarek Helmy, ICS-KFUPM

Example Semaphores

think();

draw_A();

think();

draw_B();

think();

draw_C();

A

C

B

A

No semaphores

46

Dr. Tarek Helmy, ICS-KFUPM

Example Semaphores

think();

draw_A();

think();

draw_B();

think();

draw_C();

A

C

B

C

No semaphores

47

Dr. Tarek Helmy, ICS-KFUPM

Example Semaphores

think();

draw_A();

think();

draw_B();

think();

draw_C();

A

C

B

B

No semaphores

48

Dr. Tarek Helmy, ICS-KFUPM

Process A Process B Process C

think(); b.wait(); c.wait();

draw_A(); think(); think();

b.signal(); draw_B(); draw_C();

 c.signal();

Example Semaphores

Semaphores b = 0, c = 0;

49

Dr. Tarek Helmy, ICS-KFUPM

Example Semaphores

think();

draw_A();

b.signal();

b.wait();

think();

draw_B();

c.signal();

c.wait();

think();

draw_C();

A

C

B

Semaphores

b = 0

c = 0

50

Dr. Tarek Helmy, ICS-KFUPM

Example Semaphores

think();

draw_A();

b.signal();

b.wait();

think();

draw_B();

c.signal();

c.wait();

think();

draw_C();

A

C

B

Semaphore

b = -1

c = -1

51

Dr. Tarek Helmy, ICS-KFUPM

Example Semaphores

think();

draw_A();

b.signal();

b.wait();

think();

draw_B();

c.signal();

c.wait();

think();

draw_C();

A

C

B

A

Semaphore

b = -1

c = -1

52

Dr. Tarek Helmy, ICS-KFUPM

Example Semaphores

think();

draw_A();

b.signal();

b.wait();

think();

draw_B();

c.signal();

c.wait();

think();

draw_C();

A

C

B

Semaphore

b = 0,

c = -1;

53

Dr. Tarek Helmy, ICS-KFUPM

Example Semaphores

think();

draw_A();

b.signal();

b.wait();

think();

draw_B();

c.signal();

c.wait();

think();

draw_C();

A

C

B

B

Semaphore

b = 0

c = -1

54

Dr. Tarek Helmy, ICS-KFUPM

Example Semaphores

think();

draw_A();

b.signal();

b.wait();

think();

draw_B();

c.signal();

c.wait();

think();

draw_C();

A

C

B

C

Semaphore

b = 0,

c = 0;

55

Dr. Tarek Helmy, ICS-KFUPM

Classical Problems of Synchronization

• The following problems are used for testing nearly every newly

proposed synchronization scheme:

– Bounded-Buffer Problem

• Also known as the “consumer-producer” problem

– Readers and Writers Problem

• Exclusive access to shared object/DB when modification

of the object/DB is required

– Dining-Philosophers Problem: Need to allocate several

resources among several processes without deadlock and

starvation.

56

Dr. Tarek Helmy, ICS-KFUPM

Bounded Buffer or “Consumer-Producer”

• Two processes (one producer, one consumer) share a
common, fixed-size buffer

• Producer places information into the buffer

• Consumer takes it out

Producer:

Consumer:

16 46 27 67

16

57

Dr. Tarek Helmy, ICS-KFUPM

Producer-Consumer Problem

• Why do we need synchronization?

– The producer wants to place a new item into the buffer, but the buffer is already

full

– Consumer wants to consume an item, but the buffer is empty

• Solution:

– If the buffer is full the producer goes to sleep,

• Wakes up when the consumer has emptied one or more items.

– If buffer is empty, consumer goes to sleep,

• Wakes up when the producer has produced items

• Race conditions may occur

– Wakeup call might be lost

– Producer will eventually fill buffer and then goes to sleep

– Consumer will also sleep

– Both will sleep forever

58

Dr. Tarek Helmy, ICS-KFUPM

Semaphore Solution

• The structure of the producer process:

 while (true) {

 // produce an item

 wait (empty); // initially empty = N

 wait (mutex); // intiallly mutex = 1

 // add the item to the buffer

 signal (mutex); // currently mutex = 0

 signal (full); // initially full = 0

 }

60

Dr. Tarek Helmy, ICS-KFUPM

Semaphore Solution

• The structure of the consumer process

 while (true) {

 wait (full); // initially full = 0

 wait (mutex); // intiallly mutex = 1

 // remove an item from buffer

 signal (mutex); // currently mutex = 0

 signal (empty); // initially empty = N

 // consume the removed item

 }

61

Dr. Tarek Helmy, ICS-KFUPM

Readers-Writers

• Concurrent processes share a file, record, or other resources

• Some may read only (readers), some may write (writers)

• Two concurrent reads have no adverse effects

• Problems if

– Concurrent reads and writes

– Multiple writes

– May result in starvation, deadlock

• Race conditions may occur if the resource is modified by two processes

simultaneously

• Solution: use semaphores:

– Semaphore mutex initialized to 1.

– Semaphore wrt initialized to 1.

– Integer readcount initialized to 0.

62

Dr. Tarek Helmy, ICS-KFUPM

Classical Problem 2: The Readers-Writers Problem

• Multiple readers or a single writer can use DB.

writer

writer

reader

reader

reader

reader

writer

writer

reader

reader

reader

reader

X

X X

 No problem

 File

File

P1

P2

P2

P1

63

Dr. Tarek Helmy, ICS-KFUPM

Classical Problem 2: The Readers-Writers Problem

writer

writer

reader

reader

reader

reader

writer

writer

reader

reader

reader

reader

 File

File

 Problem

P1

P2 P1

P2

64

Dr. Tarek Helmy, ICS-KFUPM

Readers-Writers Problem

• The structure of a writer process

 while (true) {

 wait (wrt) ;

 // writing is performed

 signal (wrt) ;

 }

65

Dr. Tarek Helmy, ICS-KFUPM

Readers-Writers Problem

• The structure of a reader process

 while (true) {

 wait (mutex) ;

 readcount ++ ;

 if (readcount == 1) wait (wrt) ;

 signal (mutex)

 // reading is performed

 wait (mutex) ;

 readcount - - ;

 if (readcount == 0) signal (wrt) ;

 signal (mutex) ;

 }

66

Dr. Tarek Helmy, ICS-KFUPM

Dining Philosophers

• Five philosophers sit at a round table - thinking and eating

• Each philosopher has one chopstick

– Five chopsticks total

• A philosopher needs two chopsticks to eat

– Philosophers must share chopsticks to eat

• No interaction occurs while thinking

• Problem:

– Starvation

• A philosopher may never get the two chopsticks necessary to eat

– Deadlocks

• Two neighboring philosophers may try to eat at same time

• Solution:

– Utilize semaphores to prevent deadlocks and/or starvation

– Each chopstick is represented by a semaphore

• Advantages

– Guarantees that no two neighbors will attempt to eat at the same time

67

Dr. Tarek Helmy, ICS-KFUPM

Dining Philosophers Diagram

P1 P2

 P5

 P4

P3

68

Dr. Tarek Helmy, ICS-KFUPM

Possible Solution

• One semaphore per philosopher

var chopstick: array [5] of semaphore; / all initialized to 1

repeat

 wait(chopstick[i]);

 wait(chopstick[i + 1 mod 5]); // no two neighbors will eat at the same time

 ...

 eat

 ...

 signal(chopstick[i]);

 signal(chopstick[i + 1 mod 5]);

 ...

 think

 ...

until false;

69

Dr. Tarek Helmy, ICS-KFUPM

Outline of a Correct Solution

• Deadlock might happen if all philosophers decided to eat at the

same time.

• Solution:

– A philosopher is allowed to pick up chopsticks only if both

are available.

– Allow at most four philosopher to be sitting simultaneously at

the table.

– This requires careful coordination (e.g. critical sections)

– Does not automatically resolve starvation

70

Dr. Tarek Helmy, ICS-KFUPM

Critical Regions

• To avoid the pervious errors of semaphores, a high-level language
synchronization construct called critical-region.

• We assume that the a process consist of some local data, and a sequential
program that can operate on the data.

• The local data can be only accessed by only the sequential program
encapsulated within the same process. (one process can not access the data
of another process)

• A shared variable v of type T, is declared as:

 v: shared T

• Variable v accessed only inside statement

 region v when B do S

where B is a Boolean expression.

• While statement S is being executed, no other process can access variable v.

• Regions referring to the same shared variable exclude each other in time.

• When a process tries to execute the region statement, the Boolean expression
B is evaluated. If B is true, statement S is executed. If it is false, the process
is delayed until B becomes true and no other process is in the region
associated with v.

71

Dr. Tarek Helmy, ICS-KFUPM

Monitors

• Another programmer-defined operators construct that allows the safe
sharing of an abstract data type among concurrent processes.

• A monitor type consists of declarations of variables whose values define the
state of an instance of the type and the procedures or functions that
implement operations on the type.

• Below is the monitor syntax.
 monitor monitor-name

 { shared variable declarations

 procedure body P1 (…) {

 . . .

 }

 procedure body P2 (…) {

 . . .

 }

 procedure body Pn (…) {

 . . .

 }

 {

 initialization code

 }

 }

72

Dr. Tarek Helmy, ICS-KFUPM

Monitor Diagram

shared data

 initialization

 code

...

 operations

entry queue

73

Dr. Tarek Helmy, ICS-KFUPM

A Problem with Monitors

• To allow a process to block themselves when they cannot proceed

within the monitor, a condition variable must be declared, as

 condition x, y;

• The only operations that can be invoked on a condition variable is:

wait and signal.

– x.wait suspends the process until it is invoked by another

process, and

– x.signal releases exactly one process from the affiliated waiting

queue

• Only usable in a few programming languages

• Solves mutual exclusion problem only for CPUs that all have

access to common memory; not designed for distributed systems

74

Dr. Tarek Helmy, ICS-KFUPM

Monitor Diagram

shared data

 initialization

 code

...

operations

entry queue

x
y
z

condition variable queues

75

Dr. Tarek Helmy, ICS-KFUPM

Solaris 2 Synchronization

• Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing.

• Uses adaptive mutexes for efficiency when protecting data from
short code segments.

• Uses condition variables and readers-writers locks when longer
sections of code need access to data.

• Uses turnstiles to order the list of threads waiting to acquire
either an adaptive mutex or reader-writer lock.

76

Dr. Tarek Helmy, ICS-KFUPM

Windows Synchronization

• Uses interrupt masks to protect access to global resources on
uni-processor systems.

• Uses spinlocks on multiprocessor systems.

• Also provides dispatcher objects which may act as wither
mutexes and semaphores.

• Dispatcher objects may also provide events. An event acts
much like a condition variable.

77

Dr. Tarek Helmy, ICS-KFUPM

The End!!

Thank you

Any Questions?

78

