BSaada3%

Operating Systems ICS 431

[ N

Weeks 9-10

Ch. 8 Memory Management

Dr. Tarek Helmy El-Basuny

Dr. Tarek Helm KFUPM-ICS
y@ I Baaaa0%

FFEfLo L LD HF



BSaada3%

[ N
[ ]

Ch. 8 Memory Management

Main duties of the Memory Management Unit,
* Memory Management Requirements:
= Relocation, Protection, Sharing, Logical Organization, Physical Organization

» What is Logical address? What is physical address?

= Logical/Virtual address: Generated by the CPU and reflects (A process’s
view of its own memory)

= Physical address: Address seen by the memory unit (stored in the Memory Address

Register)

« Address Binding/Mapping (Logical to Physical Address Translation),

* Processing Steps of a User’s Program,

* The dynamic loading & linking and their advantages,
« Swapping, Swapping affect on the context switch, Swapping time and Quantum Time,
« Contiguous and Non-contiguous Allocation with their advantages and disadvantages,

« Memory Partitions Allocation: equal and un-equal size partitioning of the main memory,

* Dynamic Partitioning: partition’s size and numbers will be dynamic,

» Fragmentation: Internal and External,
* How to minimize the Fragmentation?

= Compaction, Paging, Segmentation, Segmentation with Paging

Dr. Tarek Helmy@KFUPM-ICS

O a0

FFEfLo L LD HF



BSaada3%

Memory Management Unit (MMU)

We have seen how the processes share the CPU. How?

A\

Processes also share the physical/main memory. We want to know
How?

[ N
Y

» As a fact, the OS kernel occupies a part of the main memory. For
what?

» The rest of the main memory will be shared by running processes.

» What happen if only few processes are loaded into the main
memory?

= The multiprocessing level will be less and resources will not be
maximally used.

» Hence, the OS goal is to allocate the main memory efficiently to
processes to pack as many processes as possible to increase the
concurrency level and to maximize resources utilization.

» Itis recommended for the OS to partially (not Fully) load the
processes into the main memory to increase the concurrency level.
Which pages/segments of the process should be loaded?

» Most frequently used part of the process.

Dr. Tarek Helmy@KFUPM-ICS 3

il

004

8000

10400

Operaing
systen

process

PIOceSS

0004

base

0I0cESS

12000

mi

O a0

FFfLo L L ¥



BSaada3%

Memory Management Unit (MMU)

The MMU is responsible for the following activities:

— Keep track of which parts of memory are currently being used and
by which processes.

[ N

— Decide which process to load when memory space becomes
available.

» A policy decision
— Maintain mappings from physical to virtual memory and vise versa.
« Through page tables

— Decide how much memory (pages/segments) to allocate to each
process.

» A policy decision
— Decide when to remove/swap out a process from the main memory
» A policy decision.

FFEfLo L LD HF

Dr. Tarek Helmy@KFUPM-ICS 4 pwwaTww



BSaada3%

Memory Management Requirements

Relocation

— MMU decides where the process will be placed in memory when it is executed,
the programmer does not know about that.

— A process may be relocated in main memory due to swapping.

« Swapping enables the OS to have a larger pool of ready-to-execute
processes.

— Memory references in code (for both instructions and data) must be translated to
physical memory address.

 Protection

— Processes should not be able to reference memory locations of each other
without permission.

— Address references must be checked/validated at run time by hardware.

» Impossible to check addresses at compile time in programs since the
program could be relocated.

* Sharing
— OS may allow several processes to access a common portion of main memory
without compromising the protection.
— Cooperating processes may need to share access to the same data structure.

» Better to allow each process to access the same copy of the global data
rather than having their own separate copies.

Dr. Tarek Helmy@KFUPM-ICS 5

[ N
[ ]

FFEfLo L LD HF

O a0



BSaada3%

Memory Management Requirements

Logical Organization
— Users write programs in modules with different characteristics
* Instruction modules are execute-only.
« Data modules are either read-only or read/write.
« Some data modules are private and others are public.

— To effectively deal with user’s programs, the OS and HW should support a
basic form of modules to provide the required protection and sharing.

[ N
[ ]

 Physical Organization
— Auxiliary memory is the long term store for programs and data .
— Main memory holds processes and data currently in use.
— Main Memory may not be available for the whole process plus its data.

« Swapping allows various modules to be assigned the same region of
memory.

— Moving information between these two levels of memory is a major concern
of memory management unit.

Dr. Tarek Helmy@KFUPM-ICS 6 wuwuaumw

FFEfLo L LD HF



BSaada3%

Process’s Memory Protection

How does the OS Protect processes from each other?
Hardware-support scheme

— Relocation (Base) register contains value of
smallest physical address.

— Limit register contains range of logical addresses —
each logical address must be less than the limit
reqister.

« More advantages of Base and Limit Registers.

— The limit register provides an effective way to allow
the OS size to change dynamically. As the OS
contains some transient code and buffer space for
device drivers, if the device driver is not commonly
used, its code can be moved out and give a
space for other processes.

— The base register allows the process to be relocated
by changing the content of the base register.

— The limit register provides an effective way to allow
the process size to change dynamically so that it
can grow or shrink.

[ N
[ )

Dr. Tarek Helmy@KFUPM-ICS

25600

30004

42004

88000

102400

operafing
system

Process

Process

30004

base

Process

12090

imit

O a0

FFEfLo L LD HF



BSaada3%

HW address protection with base and limit registers

[ N

base base + limit

CPU

trap to operating system
monitor—addressing error memory

A Base and a limit resister define a logical address space of a process

Dr. Tarek Helmy@KFUPM-ICS 8

O a0

FFEfLo L LD HF



BSaada3%

Physical and Virtual Address Space

Physical address space: The address space supported by the
hardware “the address loaded into the memory address register”.

[ N
[ ]

hardware can support.
— Starting at address 0-F, going to address MAX,, .

 Logical/Virtual address space: A process’s
view of its own memory “generated by the CPU”.

« Avirtual address refers to a specific location within a process.
— Address relative to start of process’s address space

— Starting at address 0-L, going to address MAX,,

(e

=g e L)

2OOO ]

=} 2O <}

EZE2COCOCD

A O =1 COCD

o e raatinrmcg
systerm

BOOO<)

== ==

1 =2=090

lirmit

« A Base and a Limit Registers Define a Logical Address Space
« CPU dispatcher loads the base and limit registers with the

correct values (stored in PCB) as part of the context switch.

Dr. Tarek Helmy@KFUPM-ICS

sys

« The physical address refers to a specific location in memory, that the

MAX, o5

FFEfLo L LD HF



BSaada3%

Logical to Physical Address Translation

[ N

Pase HRegister

Logical address generated by the CPU

Bounds Register

Process Contrel Block

FProgram

e Comiparator | ——— 5

-~
Interrupt to

opcerating systerr

Dr. Tarek Helmy@KFUPM-ICS

INata

Stack

FProcess intsage im
MAaln MIeETrTory

10
Baaad a0k

FFEfLo L LD HF



BSaada3%

Logical to Physical Address Translation

« The run time mapping from Logical to Physical addresses is done by the MMU,
many methods to do such mapping, i.e. "contiguous, paging, segments”

[ N

logical address
page num | offset
logical physical
tabl aldress, y address physical
age table
page table bag CPU ™ p|d fld Memory
hase reg i frame num
/s
p{
frame | offset B s
physical address -
page table
Dr. Tarek Helmy@KFUPM-ICS 11

O a0

FFEfLo L LD HF



BSaada3%

Processing Steps of a User’s Program

« User’s programs go through many steps (compile, link, load) before running.

[ N

program
Librar :
y Dﬂm compii%rtor /]r Eompile
4 assempbler nme
Source Binary
= [rnsle ' ador F--H =+ Pagilfe LeE
g Translator | | Linker | | Loader ot Results | ( obieer |
linkage
editor
module time
. oy
Ot~ By = C‘“‘: ?‘ﬁ’ — 5
- dynamicall
T “ioadied | ] a
Skt - RN execution 4
inking . (NSRS - time (rur d
image d
a
Dr. Tarek Hel KFUPM-| -
r. Tarek Helmy@KFU CS 12 ey



[ N

BSaada3%

Linking and Loading Steps

Linking: Different parts of a program are linked
together in order to make them a runnable entity.
This can be done:

— Before execution (Static linking)
— On demand during execution (Dynamic)

« Loading: Load the linked parts into the main memory
(ready to execute). May involve address translation.

— Absolute/static, or re-locatable/dynamic
» Aspects of Loading
— Finding free memory for loading a process.
— Could be contiguous or Non-contiguous/scattered.

— Adjust addresses in the process (if required) once it
Is known where the process will be loaded.

Dr. Tarek Helmy@KFUPM-ICS

other
ohject
modules

system

source
program

compiler or
assembler

compile
time

linkage
editor

load
module

load
time

library
loader ‘
dynamicall

loaded ’ ‘
system ¥ ~ 4
library | in-memory executior|| =
dynamic binary - time (runl|" 3

linking memory time)
image ‘
13 .
Baaaamnhk



BSaada3%

Dynamic Linking

[ N

routine till the execution time.

» Dynamic linking is the process of postponing the linking of a certain library

» This feature is used with programming language’s and system’s library.

« Without this feature, all programs on a system need to have a copy of their

programming language’s library included in the executable image. This wastes

both the disk and main

memory spaces.

« With dynamic linking, stub is included in the image for each library routine.

— Stub used to locate the appropriate memory-resident library routine.

— Stub replaces itself with the address of the routine, and executes the routine

so that the next time the code segment is reached, the library routing

executed directly, incurring the cost of dynamic linking.

« Dynamic linking is particularly useful for libraries.

Dr. Tarek Helmy@KFUPM-ICS

14

O a0

FFEfLo L LD HF



BSaada3%

Dynamic Loading

* With dynamic loading, a routine is
not loaded until it is called.

/\ « Dynamic loading allows better
v memory-space utilization.

Advantages of Dynamic Loading:

[ N

_Logded when calle « Un-used routines never loaded into

D the memory.

Loaded when called

» Useful when large amounts of code

/

are needed to handle infrequently
‘Wd occurring cases, such as error .
routine. -y
. |
v 4
o
|
Dr. Tarek Hel KFUPM-I -
r. Tarek Helmy@KFU CS 15 G



BSaada3%

Advantages of Dynamic Linking and Loading

[ N

* Advantages of Dynamic Linking

— Supports portability: if the external module is an OS/language utility.
Executable files can use another version of the external module of

another OS/language without the need of being migrated.

— Code sharing: The same external module needs to be loaded in main

memory only once. Each process is linked to the same external module.
— Saves memory and disk space.
Advantages of Dynamic Loading:
— Un-used routines never loaded into the memory.

— Useful when large amounts of code are needed to handle infrequently

occurring cases, such as error routine.

Dr. Tarek Helmy@KFUPM-ICS 16 pooauww

FFEfLo L LD HF



[ N

Dr. Tarek Helmy@KFUPM-ICS 17

BSaada3%

Time of Address Binding/Mapping

» Address binding of processes and data (Logical address to Physical

address mapping) can happen at three different stages:

Compile time: the process will be fixed to an absolute address.

Recompilation is necessary if the starting location changes.

Link and Load time: Codes can be linked then loaded to any

portion of memory. (Re-locatable code)

Run time: Code can be moved to any portion of memory during its

execution.

But it is recommended to be done during the run time to

support the relocation of processes in the main memory.

O a0

FFEfLo L LD HF



BSaaaah
Swapping

Swapping allows processes to be moved from

the main memory to auxiliary memory and then

[ N

back to the main memory again for execution.

* Forinstances, in RR scheduling policy, when
the time quantum of a process expires, the
memory manger starts to swap-out/roll-out the
current process and swaps-in/roll-in the next

process in turn.

* In priority-based scheduling algorithms; lower-
priority process is swapped-out so higher-
priority process can be swapped-in/rolled-in and

executed.

Dr. Tarek Helmy@KFUPM-ICS

operating
system

process P,

process P,

O a0

— ]
RESE.
user v
P backing store
main memory
L |
a
d
d
d
|
18 :




BSaada3%

Swapping and Context Switch

With swapping, context switches will be more expensive because
auxiliary memory (generally HD) is much slower than main memory.

[ N

Swapping needs a backing store (HD) that is: Fast, large enough to
accommodate copies of all memory images for all users, and must
provide direct access to these memory images.

« The effect of address binding on swapping

— If address binding has been done at linking or loading time then the
process cannot be moved to different locations.

— If address binding has been done at running-time: It’s possible to

swap a process into a different memory space.

FFEfLo L LD HF

) I KFUPM-|
Dr. Tarek Helmy@KFU CS YV gwagauamuw



BSaada3%

Swapping & Execution/Quantum Time

« Swapping is affected by transferring rate of the HD:
« The dispatcher checks if the scheduled process’s pages are in memory or not.

[ N

» If not and there is no free memory space, then the dispatcher swaps out a
process currently in and swaps in the desired process.

« The Context-switch time is fairly high, i.e. assume: a 1 MB user process,
« HD (backing store) transfer rate = 5 MB/Sec, avg. Latency= 8 ms
« Latency: The time it takes to position the proper sector under the R/W head.

— Transferring 1MB process to/from memory takes 1MB/5MB per second + 8
millisecond = 208 ms

— Swap in and out when context switch = 208 * 2= 416 ms

« For efficient CPU utilization, we want the process execution time to be long
relative to the swap time. In RR algorithm we need time quantum be >416 ms

— Major part of any swap time is the transfer time.

» Total transfer time is directly proportional to the amount of memory
swapped. Swapping 100 KB is faster than 1 MB.

 Better to know exactly how much memory a process is using

FFEfLo L LD HF

Dr. Tarek Hel KFUPM-|
r. Tarek Helmy@KFU CS 20 pep——



BSaada3%

[ N

Frequent Swapping causes Thrashing

Swapping frequency should be minimized because:

processes, this is called thrashing.

— It requires too much swapping time and provides too little execution for the

« Thrashing: means the CPU time is used in swapping processes in or out without

executing the processes themselves.

« Thrashing is a condition in which excessive swapping operations are taking

place.

« Swapping is affected by other factors:

« If we want to swap out a process, it must be idle not on turn to run:

— It may be waiting for I/O operation, etc.

« Modified versions of swapping are found on many OSs, i.e., UNIX & Windows.

— UNIX: Start swapping if many processes were running and were using a

threshold amount of memory.

Dr. Tarek Helmy@KFUPM-ICS

21

O a0

FFEfLo L LD HF



[ N

BSaada3%

Contiguous and non-Contiguous Allocation of a Process

The main memory must accommodate both OS and
various user processes. We need to allocate it in the
most efficient way.

Main memory usually divided into two partitions:
— Resident OS, may held in either low/high memory.

— The major factor affecting this is the location of
interrupt vector.

— Since the interrupt vector is often in lower part, the
OS is also in the lower part.

— User processes then held in high memory.
Contiguous allocation: all pages/segments of a
process (address space) are allocated together in one
chunk.

Non-Contiguous allocation: pages/segments of the
process (address space) can be scattered everywhere
in the memory.

What are the advantages and disadvantages of both
approaches?

Dr. Tarek Helmy@KFUPM-ICS

Interrupt vector

operating
system

User’s
Processes

22

O a0

FFEfLo L LD HF



L L R RS LY

N Memory Partitioning

|

4 -  Partition the main memory into a set of non

: overlapping regions called partitions or frames.

W - Partitions/Frames can be of equal or unequal sizes.

.. The OS uses a table to know about which
parts/frames of memory are available and which are
occupied.

* A hole means un-used Partition/Frames of the main

memory

— Holes of various size may be scattered
throughout memory.

« When a process arrives, it is allocated a free hole
that is large enough to accommodate it.

— The hole is split into two parts:
* One for the arriving process,
* One returned to the set of holes.

 When a process terminates, its allocated memory is
returned to the set of holes.

— Maybe merged with adjacent holes.

Dr. Tarek Helmy@KFUPM-ICS

Operating System Operating System
8M 8M

2M

4M

6M

LLLEW

Equal-size partitions Unequal-size partitions L

I
23 mmaaaunn



BSaada3%

Memory Partitioning & Contiguous Allocation (Example)

[ N

OS

OS

process 5

OS

process 5

OS

process 5

process 8

OS

process 2

process 5

OS

process 5

process 2

OS

process 9

process 2

Dr. Tarek Helmy@KFUPM-ICS

process 2

process 9

process 10

process 2

24

O a0

FFEfLo L LD HF



BSaada3%

Placement with Equal Size Partitions

» With equal-size partitions

» If there is an available partition, a process can be loaded
into that partition.

» Because all partitions are of equal size, it does not
matter which partition is used.

» If the process is too large to fit in a partition, then OS must
swap out another process or support partial allocation.

» When the module needed is not present, the OS must
load that module into the process’s address space.

> If all partitions are occupied by blocked processes, OS
chooses one process to swap out to make room for the
Nnew process.

» When swapping out a process, its state changes to a
Blocked/Suspend state, and gets replaced by a new
process or a process from the Ready/Suspend queue.

» Inefficient memory utilization: Any process, no matter how small,
occupies an entire partition. The remaining hole is called
internal fragmentation.

[ N

Dr. Tarek Helmy@KFUPM-ICS 25

Operating System
8M

8§M

8 M

8§M

8 M

8M

8M

LLLEW

Equal-size partitions g

Baaada0En



=

[ N

BSaada3%

Placement with non-equal Size Partitions

Non-equal-size Partitions/Frames with multiple queues

Assign each process to the smallest partition within

which it will fit.
A queue for each partition size.

Tries to minimize the problem of internal

fragmentation.
Efficient memory utilization.

Problem: Some queues will be empty if no
processes within a size range is present. That

means their partitions will not be used!

Dr. Tarek Helmy@KFUPM-ICS

(Operating
System

L

New
Processes

N

26 Baaa

FFEfLo L LD HF

0O



BSaada3%

Placement with non-equal Size Partitions

Non-equal-size Partitions/Frames with a single

[ N

queue

— To load a process into the MM, the smallest

available partition that fits the process is selected.

— The OS can skip down the queue to see whether
New

smaller memory requirements of some other p,..mses_"]]m]:I

Processes can be met.

— Increases the level of multiprocessing at the

expense of queue processing and.

— It may lead into internal fragmentation but will

be less than in equal size partitioning.

Dr. Tarek Helmy@KFUPM-ICS 27

Operating
System

O a0

FFEfLo L LD HF



BSaada3%

Dynamic Partitioning

» Modern OSs use dynamic partitioning,

[ N

» Partitions are of variable length and number (called Frames).

» Each process is allocated as many frames as possible according to

Its working set.

» Eventually holes in between the processes (called external
fragmentation) or holes inside the last allocated frame(called internal

fragmentation) are formed in main memory.

» Must use compaction to shift processes so they are contiguous and

all free memory is in one block.

Dr. Tarek Helmy@KFUPM:-|
arek Helmy@KFUPM-ICS 8 pumuuww

FFEfLo L LD HF



BSaada3%

Operating
System

[ N

(a)

Dynamic Partitioning: An Example

%JEHK

#H%K

Operating
System

Process 1

(b)

20K

SToK

Operating
System

Process 1

Process 2

(c)

20K

224K

352K

Operating
System

Process 1

Process 2

Process 3

(d)

AMK

224K

2REK

3214

» A hole of 64K is left after loading 3 processes: not enough room for
another process.

» The OS selects P2 and swaps it out to bring in P4.

Dr. Tarek Helmy@KFUPM-ICS

Y mmuwauuw

FFEfLo L LD HF



BSOS agaaahl
Dynamic Partitioning: An Example

[ N

Operating Operating Operating Operating
Svystem System System Svystem
Process 2 224K
Process 1 20K Process 1 20K IMOK
Jak
Process 4 128K Process 4 128K Process 4 128K
224K
11 DEk DHE
Process 3 2EEK Process 3 2ERK Process 3 2HEK Process 3 2EEK
Bk (5504 (EEN ok
(e) () (2) (h)
P2 swapped out P4 swapped in P1 swapped out P2 swapped in

» Another hole of 96K Is created

» Eventually each process is blocked. The OS swaps out P1 to bring in
again P2 and another hole of 96K is created...

» Compaction would produce a single hole of (96+96+64)= 256K

FFEfLo L LD HF

Dr. Tarek Helmy@KFUPM-|
arek Helmy@KFUPM-ICS N pmmunww



BSaada3%

Placement Algorithms

«  OS must decide which free block/partition to allocate to a process in order to
reduce the compaction time. The following algorithms are used:

«  Best-fit algorithm

» Chooses a block/partition in the entire memory that is close enough in size
to the loaded process.

* Results in minimally sized fragments that require compaction.
« We must search the entire list unless they have been sorted by size.
«  First-fit algorithm
« Starts scanning the MM from the beginning and chooses the first available
block/partition that is large enough to fit the process.

* May have many process loaded in the front end of memory that must be
scanned.

*  Next-fit
- Scans the MM from the location of the last allocation and chooses the next
available block/partition that is large enough to fit the process.

 More often allocate a block of memory at the end of memory where the
largest block is found.

« Compaction is required to obtain a large block at the end of memory.
*  Worst-fit
« Chooses the biggest block/partition first. Makes bigger partitions more

[ N

useful.
e Quick-fit
» Chooses a block/partition from a common-size partition list.
Dr. Tarek Helmy@KFUPM-ICS 31

O a0

FFEfLo L LD HF



BSaada3%

[ N

Last
allocated
block (14K)

Example: Placement Algorithm

8K

12K

22K

18K

A 4

8K

oK

14K

36K

Dr. Tarek Helmy@KFUPM-ICS

8K
First Fit 12K
Best Fit 6K
2K
8K
6K
[1 Allocated block
L_| Free block 14K
Next Fit
I >
Worst Fit 20K
Before

-

After
32 mmaaamwm

FFEfLo L LD HF



BSaada3%

Placement Algorithm: Comments

> Best-fit searches for the smallest partition: the fragment left behind is as

[ N

small as possible.

» Main memory quickly forms holes too small to hold any process:
compaction needs to be done more often.

> First-fit favors allocation near the beginning: tends to create less
fragmentation than Next-fit.

» Next-fit often leads to allocation of the largest blocks at the end of

memory.

» Worst-fit and quick-fit have still fragmentation (useless holes) problems.

| KFUPM-I
Dr. Tarek Helmy@KFU CS 3B mmuwauww

FFEfLo L LD HF



BSaada3%

Fragmentation Manipulation

« External fragmentation
— Unused memory partitions (un-allocated partitions to processes).

Internal fragmentation

— Unused memory locations within a partition because the allocated process may
be slightly smaller than the allocated partition. For example, consider a hole of
18,464 bytes to allocate to a process with 18,462 bytes.

— Also happen when physical memory is broken into fixed-sized large blocks, and
memory is allocated to processes in unit of block sizes.

« Fragmentation Manipulation:
— Compaction/defragmentation: re-locate memory contents to place all free
memory locations together in one large partition that can host a process.
— It is possible only if relocation is supported, and the address mapping is done at
execution time.
« After compaction, the contents of both Limit and Base registers must be modified.

— Paging: allow the logical address spaces of the process to be non-contiguous,
thus a process can be allocated a memory partition wherever it is available.

— Segmentation: divide the process logical address space into variable-sized
segments, with semantic base, i.e. (Data segment, Code segment, Tables
segment, Arrays segment, Stacks segment, etc.)

[ N

FFEfLo L LD HF

) I KFUPM-|
Dr. Tarek Helmy@KFU CS ¥ mmwauww



BSaada3%

Internal Fragmentation

Ll

operating
system / OS allocates a partition of size \
18,464 bytes to the process of
Size 18,462.
P « Result in internal fragmentation
K of size 2 bytes.

next request is

for 18,462 bytes
hole of 18,464 bytes

It is an overhead to
maintain the compaction
for a hole of 2 bytes.

FFEfLo L LD HF

Dr. Tarek Helmy@KFUPM:-|
arek Helmy@KFUPM-ICS ¥ muumuaunm



BSaada3%

External Fragmentation: Example

[ N

0
operating
system
400K
2160K
2560K

job queue
process memory time
P, 600K 10
P, 1000K 5
Pa 300K 20
P, 700K 8
P 500K 15

Dr. Tarek Helmy@KFUPM-ICS

36

FFEfLo L LD HF

O a0



FldLo L@l

400K

1000K

BSaada3%

External Fragmentation: Example

operating
system

400K

terminates

2000K

2300K
2560K

operating
system

Dr. Tarek Helmy@KFUPM-ICS

400K

1000K

q
allocate

Pa

1700K
2000K

2300K
2560K

operating|
system

.
i

terminates
1700K
2000K
2300K
2560K

[ 1 Allocated block
[ Free block

e

(O8]
~J

400K

900K
1000K

q
allocate

Ps

1700K
2000K

2300K
2560K

L
L
L
L
L
L
L

operating
system

_
4
S’

FFEfLo L LD HF



BSaada3%

[ N

Compacting External Fragments

O

operating
system

400K

OSOOK el 100K

1000K

1 700K
2000K

PS
el T
2560K

Dr. Tarek Helmy@KFUPM-ICS

400K

2560K

Compaction: re-locate memory contents to place all free memory
together in one large block.

operating
system

38

O a0

FFEfLo L LD HF



BSaada3%

Paging to minimize Fragmentations

* Paging permits the logical address space of a process to be non-contiguous.
« Divide physical memory into blocks called frames.

— The size of the frame is a power of 2, between 2°=512 KB and 2°'=16 MB
« Divide logical memory (process space) into blocks of same size called pages.

« The size of a page is typically a power of 2, from 512 KB to 16 MB. The page’s
size will be the same size as of the frame.

* OS has to keep track of all free frames,

« Torun a process of size n pages, the OS needs to find n free frames and loads
the process’s n pages into n free frames. Otherwise partial loading will be done.

« The OS uses a page table to translate the logical address to physical address.
— Each process has a page table
* A pointer to the page table is stored with the other registers in PCB.

« CPU dispatcher loads the page table into the system-wide hardware
page table (like PC and registers) as part of the context switch.

« With paging, internal fragmentation may be there (a process may use some
bytes from the last page), while external fragmentation will not be there (any
free frame wherever it is can be allocated to a process).

« Page and frame sizes depends on the HW architecture of the processor.
Dr. Tarek Helmy@KFUPM-ICS 39

[ N

O a0

FFEfLo L LD HF



BSaada3%

Paging Example

[ Page no.

[ N

Frame no. |
y 4

page O

page 1

page 2

page 3

logical
memory

@WN =0
NI

page table

frame
NnumMmMber

O

1

N0 0 WON

page O

page 2

page 1

page 3

physical
memory

Dr. Tarek Helmy@KFUPM-ICS

40

O a0

FFEfLo L LD HF



BSaada3%

Address Translation/Mapping Scheme

[ N

Address generated by CPU (logical address) is divided into:

— Page number (p): Used as an index into a page table to identify the
frame number (base address) of each page in physical memory.

— Page offset (d): Combined with base address (frame number) to
define the physical memory address that is sent to the memory

address register.

« Ifthe size of logical address space is 2™, and a page size is 2™

« The page table will have (2™/2") m-n entries.

Logical Address

Page number,

Page offset

P

d

 Where p is an index into the page table and d is the displacement within

the page.

« If the size of the physical memory is 2%

« The width (# of bits) of each page table entry= (2%/2") k-n bits

Dr. Tarek Helmy@KFUPM-ICS

41

O a0

FFEfLo L LD HF



RS a0 nm
: Paging Hardware: Address Translation
. |
. |
o
a
a
logical physical
address address fOO00 ... 0000
v
CPU —>{ p [ d f d —
F

al

> Ii

page table

1111 ... 1111

physical
memory

> 1

If the size of Logical address space is 2™ bytes,
the size of the MM is 2, page size is 2" then
entries of the PT are equal to the number of
pages (2M/2") (m-n) and the width of each entry
equals k-n bits.

Dr. Tarek Helmy@KFUPM-ICS

Physical Address

frame number |, frame offset

f (k-n) d (n)

42 WEuaaaum

FFEfLo L LD HF



BSaada3%

[ N

ANOOAWN=0O

g A
WNI=00

14

UO@B—L._.m.hm QaooTo

Paging Example

}22

WN=0
MEIVRY

Ppgfge table

32 Bytes=2°

13 [(@]GIk

Physical memory space = 2°

» 274 +1 Logical address space = 24
( j Page size = 22

9 010)( 01 PT Size = 24/2%= 22

Each PT entry needs 5-2 bits

5-2 2

Physical Address

Dr. Tarek Helmy@KFUPM-ICS

43 WEuaaaum

3= 7o o

)
N
Oy

16
20 a
b
Lo
d
oa e
f
g
h
28 by
2

ke L L

mhwvw=iral rMmaermoy e



BSaada3%

Exercise

[ N

 How many bits are there in the logical address?

mapped onto a physical memory of 64 frames.

Consider a logical address space of 128 pages of 2048 bytes each,

 How many bits are there in the physical address?

Dr. Tarek Helmy@KFUPM-ICS

44

O a0

FFEfLo L LD HF



BSaada3%

[ N
N =

OS has to keep a list of Free-Frames

memory. Otherwise partial loading will be supported.

At the time of executing a process, its size expresses in pages will be
determined. Each page will be mapped to one frame.

If the process requires urgently n pages, at least n frames must be available in

3. If nframes are available, they are allocated to this process. The first page of
the process is loaded into one of the allocated frames and the frame number
IS put in the page table for this process and so on.

free-frame list
14
13
18
20
15

e,
R g

PrPage O
rage 1
page 2
Page 3
new process
\______—______,/

(a)

13

14

15

16

17

18

19

20

21

Page no.

free-frame list
15

o
\_._____-_____/
Ppage O
pPpage 1
pPage 2
pPage 3
nNnew process

13

14

15

16

17

18

!

Frame no. ]1 o

O|®|Wh

3
3
3
2

NIVES

20

Nnew-process padge table 21

(b)

page 1

page O

page 2

page 3

Before allocation
Dr. Tarek Helmy@KFUPM-ICS

LLLEW

After allocation &

45 WEuaaaumn



BSaada3%

Page Table Size & Page Size

With each process having its own page table, and with each page table

consuming considerable amount of memory.

[ N

« Aot of memory will be used to keep track of the main memory. i.e.

« Consider a process with 32-bit logical address space (4GB), if the page
size is 4 KB (2%%) then a page table may consists of up to 1 million
entries, 232/2>=1MB. Assuming that each entry needs 4 bytes (to

represent the # of frames) then each process may need up to 4 MB of

the MM for its page table only.

. Smaller page size leads to more pages, and more pages lead to

larger page table’s size.

. Want to set page size to reduce internal fragmentation

FFEfLo L LD HF

Dr. Tarek Helm KFUPM-ICS
ya 46 WmEmEaunw



BSaada3%

[ N

FYI: Optimal Page Size

What is the optimal page size (p)?

—  The OS researchers came out with an equation to determine the
optimal page size as following:

p=|2se

S = average process size,
e = size of each page table entry

—  Overhead = (s/p)*e + p/2

s/p = average number of pages per process

(s/p)*e = space taken up by average process in page table.
p/2 = average wasted memory in the last page of process

due to internal fragmentation.

Dr. Tarek Helmy@KFUPM-ICS

47

O a0

FFEfLo L LD HF



BSaada3%

Implementation of Page Table

 Most OSs allocate a page table for each process.

« A pointer to the process’s page table is stored with other register values
in the PCB.

 When the dispatcher is asked to start a process, it reloads that pointer
and defines the correct page table value.

[ N

« Most OSs allow page table to be very large and so, page table is
kept in main memory (OS memory) and,

— Page-Table Base Register (PTBR) points to the page table.
— Changing the page table requires only to change PTBR.
The problem is:

« Every data/instruction access requires two memaory accesses

— One for the address mapping and one for the data/instruction.

« The simplest way to implement the page table is to use fast dedicated
registers if the size of the page table is small.

FFEfLo L LD HF

Dr. Tarek Helm KFUPM-ICS
ye 4 WmEaaamm



[ N

BSaada3%

Associative Register (Hardware)

Two access problem of the MM can be solved by using of a special fast-lookup
hardware cache called associative registers or Translation Look-aside Buffers
(TLBs).

Each entry of the TLB consists of a key and a value

The TLB contains only (the working set) a few of the page table entries.
When the logical address is generated by the CPU, its page number is

presented to the TLB in parallel search scheme,

If the page number is found, its frame number is used to access the MM.
If the page number is not in the TLB, a memory reference to the page table

must be done.

When the frame number is obtained, use it to access MM and add the page

and frame number to the TBL for the next reference.

« Every time a new page table is selected, the TLB entries must be erased
to ensure that the next executing process does not use the wrong
translation information.

« Some TLB stores Address-Space Identification (ASID) in each TLB,

» ASID uniquely identifies each process and is used for protection.

Dr. Tarek Helmy@KFUPM-ICS

49

O a0

FFEfLo L LD HF



BSaada3%

[ N

Translation Look-aside Buffers (TLBS)

» Two accesses of the MM can be solved by the use of a special fast-lookup
hardware cache called associative or Translation Look-aside Buffers (TLBS).

« Each entry of the TLB consists of a key (page number) and a value (frame number)

* The TLB contains only a few of the page table’s entries (working set).

logical

address
CPU —>| p d |

page frame

number number

TLB hit

physical

TLB

p {
TLB miss

address

A
T —
f

page table

I.ogical address

IL.ook up
in page table

¥

Store result
in TLLB

Y

physical
memory

Add offset to
page base
address

Dr. Tarek Helmy@KFUPM-ICS

}

Physical address

FFEfLo L LD HF

50 mEaaaamm



BSaada3%

Effective Access Time (EAT)

» Associative (TLB) Lookup time = 3 time units

[ N

« Assume memory access time Is x time units

« Hit ratio (a): Percentage that a page number is found in
the TLB.

« Hit ratio (a): should be increased by increasing the
number of entries in the TLB, however it is costly as the
associative memory is too expensive.

« Effective memory-access time (EAT)

EAT=(XX+B)a+2x+pB)(1-)

Dr. Tarek Helm KFUPM-ICS
ye 51 mmmaumn

FFEfLo L LD HF



BSaada3%

Effective Access Time (EAT)

EAT=X+p)a+(2x+B)(1-a)

[ N

« Example 1
— Associate lookup 3 =20
— Memory access x = 100
— Hitratio (o) = 0.8
— EAT = (100 + 20) * 0.8

+ (200 + 20) * 0.2
=1.2*100 + 20 = 140

« Example 2
— Associate lookup 3 =20
— Memory access x = 100
— Hit ratio (o)=0.98
— EAT = (100 + 20) * 0.98

+ (200 + 20) * 0.02
=1.02 * 100 + 20 = 122

40% slow in memory access time J 22% slow in memory access time

Dr. Tarek Helmy@KFUPM-ICS

5 mEaaaaum

FFEfLo L LD HF



BSaada3%

Validity of Pages and EAT

Additional bits can be added to the page table to identify:

— Validity of pages, access type (read-only or read-write)

[ N

Such kind of bits can enhance the protection and also minimize the EAT by

avoiding the second time access to memory if the page is not there in the MM.

Valid-invalid bit attached to each entry in the page table:
— “Valid” indicates that the associated page is in MM.

— “Invalid” indicates that the page is not in MM and thus the second acess to
the MM should be avoided.

— The OS uses this bit to allow or disallow access to that page.

Dr. Tarek Helm KFUPM-ICS
ye 53 WmEaaaamm

FFEfLo L LD HF



BSaada3%

Memory Protection with Valid-Invalid bit

[ N

O
.1
2 page O
00000 frame number valid—invalid bit
page O L / 3| page 1
O| 2 \"4
Ppage 1 11 3 = 4 page 2
2| 4 v
age 2 5
e 3|7 v
page 3 4|18 | Vv 6
5| 9 A"
page 4 6| O i /7| page 3
7| O i
10,468 page 5 I 8| page 4
12,287 page table
o page 5
page n

1. Addresses in pages 0, 1, 2, 3, 4, and 5 are mapped normally through page table.
2. Second access to generate an address for pages 6 or 7 should be avoided.

Dr. Tarek Helm KFUPM-ICS
ya 4 mEmEauuE

FFEfLo L LD HF



L an
i Page Table Structure

With each process having its own page table stored in memory and used to
map logical address into physical one.

[ N
[ ]

* A huge a mount of memory will be used to map logical addresses into physical
addresses.

« It also needs more free and contiguous memory space to be stored in.
 How to solve this problem?

« Hierarchical Paging

 Hashed Page Tables

* Inverted Page Tables

FFEfLo L LD HF

Dr. Tarek Helm KFUPM-ICS
ya S5 mEmEauuE



BSaada3%

[ N

tables.

Hierarchical Page Tables

To resolve the large size page tables problem, we want to allocate the page
table into noncontiguous blocks.

And this means, break up the page table address space into multiple page

« A simple technique is to use two-level paging algorithm, in which the page table
itself is also paged.

-

\

outer page
table

(@)
- ________’/-q’
- 100
500 ]
100 500
FOSs
= FOos
9?9 B SO0
000 =
Pprage of o229

Prage table

Prage table

Mmermicory

Dr. Tarek Helmy@KFUPM-ICS

Two-Level Page-Table Scheme

56

O a0

FFEfLo L LD HF



BSaada3%

Multilevel Page Tables

Since a page table will generally require several pages to be stored.
One solution is to organize page tables into a multilevel hierarchy.

— When 2 levels are used, the page number is split into two numbers
pl and p2

— P1 indexes the outer paged table (directory) in main memory who'’s

entries point to a page containing page table entries which is itself
indexed by P2.

— Page tables, other than the directory, are swapped in and out as
needed.

[ N

logical address
P4 P2 d

p1{

- Physical Address
P F#+ D

- { Frame # a )
outer page d {'

table

page of
page table

FFEfLo L LD HF

Dr. Tarek Helm KFUPM-ICS
ya ST mEmEaneE



BSaada3%

Two-Level Paging Example

into:

[ N

— A page offset consisting of 12 bits

— A page number consisting of 20 bits (32 - 12 = 20)
* If each entry needs 4 bytes=>22%0 * 4 bytes = 4 MB

A logical address (on 32-bit machine with 4K page size) is divided

« Since the page table is paged, the page number is furthe

— A 10-bit page number.
— A 10-bit page offset.
 Thus, a logical address is as follows:

— P, Is an index into the outer page table, and P, is the
displacement within the page of the outer page table.

page number |, page offset
20 12
r divided into:

— Because address translation works from the outer page table
Inwards, it is also known as a forward-mapped page table and is

used in Pentium 2.

Page number | Page offset
P | P d
Dr. Tarek Helmy@KFUPM-ICS 10 10 12

sshaa a0k

FFEfLo L LD HF



BSaada3%

12 bits

[ N

virtual address

Two-Level Page Tables

/ 8 bits / 12 bits

master page #

secondary page# offset

physical address

page frame #

offset

Physical Memory

frame O

master
page table
secondary
secondary page table #
Ppage table # addr| T—a
»| page frame
number

Dr. Tarek Helmy@KFUPM-ICS

59

frame 1

frame 2

frame 3

page
frame Y

WO aa

FFEfLo L LD HF

0O



BSaada3%

Multilevel Paging and Performance

« A 64-bit logical address space with 4K page size:
— # of PT entries = 2°2(64 -12 = 52)

page number |, page offset page number |, page offset

52 12 ‘ 42 | 10 12

[ N

page number |, page offset page number |, page offset
32 (10|10 2 ‘ 22 |10{10 |10 2

 Since each level is stored as a separate table in memory, converting a
logical address to a physical one may take many memory accesses.

« Even though time needed for one effective memory access is
Increased, caching permits performance to remain reasonable.

FFEfLo L LD HF

Dr. Tarek Helm KFUPM-ICS
ye 60 mEaaamnm



BSaada3%

Hashed Page Tables

If we have a collection of n pages whose keys [base addresses] are unique integers then
we can store them in a hash table.

* Lookup time is minimized.
« Common in address spaces > 32 bits,

« The virtual page number is hashed into a page table that contains a chain of elements
hashing to the same location.

« Each element consists of three fields, virtual page number (Key), value of the mapped
page frame, a pointer to the next element in the list.

The algorithm works as follows:
 The page index [Key] is compared with the virtual page number in linked list for a match.

« If a match is found, the corresponding value of the mapped page’s frame is extracted to
form the desired physical address.

« If there is no match, subsequent entries in the list are searched for matching.

[ N
[ ]

physical
logical address 4' address
= |

P | d | | r | }—»

b

physical
@ —— |Lal s | ||I|p|r|.|]°°° memory

hash table

Dr. Tarek Helmy@KFUPM-ICS 61

FFEfLo L LD HF

O a0



BSaada3%

Inverted Page Table

« Another solution to the problem of maintaining large page tables is to
use an Inverted Page Table (IPT).

[ N

 We generally have only one IPT for the whole system.
« There is only one entry per physical frame in the IPT (rather than one
per virtual page).
— This reduces a lot the amount of memory needed for page tables.

« The 1stentry of the IPT is for frame #1. The n!" entry of the IPT is for
frame #n and each of these entries contains the virtual page number.

« The process ID with the virtual page number could be used to search
the IPT to obtain the frame #.

— Maintain inverted page table in associative memory hardware TLB
whose entries are searched in parallel.
— Use hash table to hash the virtual page address.

« A page fault occurs if no match is found.
Dr. Tarek Helmy@KFUPM-ICS

FFEfLo L LD HF

62 WmEAaaamn



BSaada3%

Inverted Page Table

The algorithm works as follows:

[ N

Each inverted page table entry is a pair of <process-id, page-
number>

 When a memory reference occurs, the <process-id, page-
number> is compared with the contents of the inverted page
table.

« |If a match is found, say at i'" frame then the physical address <i,
offset> is generated.

« It decreases memory needed to store each page table, but
Increases time needed to search the table when a page
reference occurs.

Dr. Tarek Helm KFUPM-ICS
ye 63 mmEmaumn

FFEfLo L LD HF



BSaada3%

Inverted Page Table Hardware

[ N

logical hvsical
address I vL physica
address physical
) — pid P d .In d > memory
search l }i
pid P

*Hl—i217 13

Hash Table

Dr. Tarek Helmy@KFUPM-ICS



BSaaaah
Ch. 8 Memory Management

O We presented last time:

Main duties of the Memory Management Unit,

*  Memory Management Requirements (Relocation, Protection, Sharing, Logical & Physical organization)
* Whatis Logical address? What is physical address?

» Logical/Virtual address: Generated by the CPU and reflects (A process’s
view of its own memory)

» Physical address: Address seen by the memory unit (added to the Memory Address Register)
« Address Binding/Mapping (Logical to Physical Address Translation),
* Processing Steps of a User's Program (compile, link, load, execute),
« The meaning of dynamic loading & linking, the advantages of Dynamic Loading & Linking,
«  Swapping, Swapping time affect on the Context Switch and the Quantum Times,
« Meaning of Thrashing and how to minimize it?
« Contiguous and non-contiguous Allocation: advantages and disadvantages of both approaches,
«  Memory Partitioning: equal and un-equal size partitioning of the main memory,
» Placement with equal size and un-equal size partitions,
* Modern OSs support dynamic partitioning: partition’s size and numbers will be dynamic,
* Placement algorithms with dynamic partitioning (First fit, Next fit, Best fit, Worst fit, Quick fit),
» Internal and External Fragmentation, How to combine the fragments through compaction?

« How to minimize the fragmentation through paging the process and non- contiguous allocation of it? L
— Logical and Physical Address Mapping by using the page table, # of bits to represent the logical and physical address, o

— Monitoring the Free frames, Page Table Size, The optimal page size, Two time accesses, minimize the effective access o
time by using TLB, Implementation of Page Table (Hierarchical Paging, Hashed Page Table, Inverted Page Table).

« Sharing of Pages, Segmentation, Address Mapping using Segment Table,

« Segmentation with Paging, Address Mapping using Segment and Page Tables
Dr. Tarek Helmy@KFUPM-ICS 65

[ N



BSaada3%

Inverted Page Table

The IPT does not contains complete information about the logical
address space of a process and this information is necessary in case of
a page fault.

» For this information to be available an external page table (one per a
process) must be kept in memory.

« Referring to page tables may negate the benefit of the IPT. However,
— These referenced page tables will occur only when a page fault occurs.

— On demand paging, we need only the page table of the active process to be
kept in memory by swapping it in.

[ N

logical

Pehvsical
address l ,L addras= Sl el
cPuU — | e e | s | = N | 1 | = | = memory
search l }i
pid | p

Inverted Page Table

Dr. Tarek Helmy@KFUPM-ICS

FFEfLo L LD HF

66 WEAaaamn



[ N
[ )

BSaada3%

Sharing of Pages

As we have seen, paging allows the process to be non-contagiously loaded
which reduces the fragmentations and improves the MM utilizations.

 One more advantage of paging is the possibility of sharing common pages, if
we have 40 processes share a text editor of 150 KB, we can share one copy of

the text editor rather than consuming 40*150 KB if we can not share it.
* Heavily used programs like Compilers, OSs, Editors, etc. can be shared.
« Shared Code

One copy of read-only (reentrant code, non-self-modifying) code can be
shared among processes (i.e., text editors, compilers, OS).

The shared pages should be protected by OS (page protection).

Shared code must appear in the same location in the logical address space
of all processes.

Inverted page tables have difficulties implementing shared pages. why?

* Private code and data

— Each process keeps a separate copy of the code and data.
— The pages for the private code and data can appear anywhere in the

Dr. Tarek Helmy@KFUPM-ICS

logical address space.

FFEfLo L LD HF

67 WEAaa'amn



BSaada3%

Shared Pages Example

[ N

ed 1 O
3
ed 2 4 1 data 1
6
ed 3 2 data 3
1
data 1 page table 3 ed 1
for J’:'1 ed 1
process P, 3 4 aed 2
ed 2
4 5
ed 3 6
i S ed3
data 2 page table
for P v data 2
d 1 2
= process F~,
3 a8
ed 2 4
o
ed 3 =
= 10
data 3 page table
for F"3
process Pg
Dr. Tarek HelImy@KFUPM-ICS
y 68 mmEaun

FFEfLo L LD HF



BSaada3%

Segmentation

Split the Process address space into dynamic size segments.

[ N
[ ]

« Each segment is an independent, and separately-addressable unit.

 Every segment is assigned (by software) a base address, which is the starting
address in the memory space.

A program is a collection of segments. A segment is a logical unit with name
and a length such as:

Main program (code section),
Subroutines,

Functions,

Local variables,

Global variables,

Stack,

Symbol table,

Arrays

subroutine

sy mbol

table

sqrt

main
program

logical address

 The compiler automatically constructs segments reflecting the input program.

« Different compilers may create separate segments for global variables, stack,
code portion of functions, etc...

« Segments are numbered and referred by number.

Dr. Tarek Helmy@KFUPM-ICS

O WmEAaaamn

FFEfLo L LD HF



BSaada3%

Memory Segmentation

[ N

Segment 1

Segment 3

Logical Address space

Dr. Tarek Helmy@KFUPM-ICS

Segment 4

Segment 2

.

Physical Memory

70

O a0

FFEfLo L LD HF



BSaada3%

Segmentation

=

If the segment is in main memory, the entry

contains the starting address and the length

of that segment.

Logical to physical address translation is

similar to paging except that the offset is

added to the starting address (instead of

being concatenated).

3. Similarly to paging, each segment table entry
contains a present bit and a modified bit.

4. Other control bits may be present if

protection and sharing is managed at the

segment level.

[ N

N

Yirtunal Address

I Seement Number ‘ Oiffset .

Seoment Table Entry

limit |base =

CPU

segment
table

no

Y
frap: addressing error physical memory

P= present bit
M = Muodified bit

P Lher Control Bits Length

Dr. Tarek Helmy@KFUPM-ICS

Seement Base

FFEfLo L LD HF

T WwEaaaaunm



BSaada3%

Segmentation Architecture

Logical address consists of a two parts
— <segment-number, offset>
« Segment table has:

— Base: contains the starting physical address where the segment
resides in memory.

— Limit: specifies the length of the segment.

« Segment-table base register (STBR) points to the segment table’s
location in memory.

« Segment-table length register (STLR) indicates number of segments
used by a program.

« Logical address consists of S [seg. Number] and D [offset into seg.]
— Segment number Sis legal if S < STLR

« Sisused as an index into the segment table.

« D must be between 0 and the limit. If not, trap an error to the OS.

« Ifyes, itis added to the segment base to produce the physical
address.

[ N

Dr. Tarek Helm KFUPM-ICS
ya 72 mmaauuW

FFEfLo L LD HF



[ N

CPU

BSaada3%

Logical
Address

Segmentation Hardware

Segment Table

|

Limit

Base

The hardware must map a two dimensional (segment # and offset) into
one-dimensional address.

Dr. Tarek Helmy@KFUPM-ICS

. @—

Physical
Address

Physical
Memory

73

O a0

FFEfLo L LD HF



BSaada3%

Address Translation in a Segmentation System

[ N

| |
| |
Virtual Address : Segment Table :
Seg # Offset =d ] + > Base +d |
| |
. ! W

| . |
1 Register .
| Seg Table Pir |
| |
| |

] Segment Table ] d -

" " S

| | 7S

2

. ¥ S# 1 W
1 g |
| |
| |Length | Base |
| |
| |
| |

1 1 \_/\
| |
Program . Segmentation . Main Memory

| |
| |

]
a3
d
d
d
a
L]
Dr. Tarek Helmy@KFUPM-ICS 74 mwagawwl



BSaada3%

Example of Segmentation

[ N

and the limit.

3. Example, segment 2 is 400 bytes long and started at 4300.

1. We have 5 segments numbered 0 to 4. They stored in the physical memory .

2. The segment table has a separate entry for each segment, the base address

4. Areference to byte 53 of segment 2 is mapped to location 4300 +53=4353.

subroutine stack

segment 3

syvimbol
segment o table

Sqgrt segment 4

main
pPrograrm

segment 2

logical address space

hON=0

limit

base

1000
400
400

1100

1000

1400
5300
4300
3200
47o0

segment table

1400

2400

3200

4300
4700

5700

5300

(Syrdele]

physical memory

sedgment O

segment 3

segment 2

segment <4

segment 1

Dr. Tarek Helmy@KFUPM-ICS

75

O a0

FFEfLo L LD HF



[ N

Dr. Tarek Helmy@KFUPM-ICS

BSaada3%

Protection and Sharing of Segments

A particular advantage of segmentation is the association of protection
with the segments, because the segments represent a semantically
defined portion of the program, instructions, data.

For example, the instruction segment can be defined as read only.

= Because the instructions are non-self modifying,
Useful protection bits in segment table entry:

= Read-only/read-write bit

= Supervisor/User bit

The memory mapping HW will check the protection bits associated
with each segment table entry to prevent illegal memory access.

Another advantages of segmentation involves the sharing of code or
data. Each process has a segment table associated with it.

Note, local data segments can not be shared.

7% WEAaaamnm

FFEfLo L LD HF



BSaada3%

[ N
\7

A\

Sharing in Segmentation Systems

» Only one copy is kept in main memory

» Shared segments should not be modified

» So that several processes can share them

Segments are shared when entries in the segment tables of 2 different
processes point to the same physical locations.

Ex: the same code of a text editor can be shared by many users

» So each user would still need to have its own private data segment

» More logical than sharing pages

Dr. Tarek Helmy@KFUPM-ICS

77

O a0

FFEfLo L LD HF



BSaada3%

Sharing of Segments: Text Editor Example

[ N

segment 0

data 1~

segment

logical address space
process P,

segment 0

data 2

segment 1

logical address space

Dr. Tarek Helmy( process F,

=i

M base

025286 [%43062 1

4425768248

segment table
process F,

M t;{ase

25286 | 43&5@/
8850 | 9000

segment table
process F,

430

8348
72773

90003

editor

data 1

data 2

physical memory

~
oo

O a0

FFEfLo L LD HF



BSaada3%

Combined Segmentation and Paging

« To combine their advantages, some OSs page the segments into pages
and use a page table per each segment. Why?

« [Each process has:
— One segment table
— One page table per segment

[ N

 The virtual address consist of:

— A segment number: used to index the segment table whose entry
gives the starting address of the page table for that segment.

— A page number: used to index that page table to obtain the
corresponding frame number.

— An offset: used to locate the word within the frame
e Segment and page tables can themselves be paged!

FFEfLo L LD HF

Dr. Tarek Helm KFUPM-ICS
ye 7 WmEaaaamm



BSaada3%

[ N

Segmentation & Pagination

Logical Address

Segment Nbr.

Page Nbr.

Offset

Segment Table

Dr. Tarek Helmy@KFUPM-ICS

Page Tables

80

Physical Memory

O a0

FFEfLo L LD HF



BSaada3%

Simple Combined Segmentation and Paging

YWirtual Address
seoment Number Page Number Offset

[ N

Seoment Table Entry
(Mher Control Bits Length Seoment Base

Page Table Entry

PMOLther Control Bils Frame Number

P= present bit
M = Modified bit

« The Segment Base is the physical starting address of that segment

« If the page and segment tables are paged, in the virtual address, the
segment and page numbers are divided into two parts.

* Present and modified bits are present only in page table entry
* Protection and sharing info most naturally resides in segment table entry
— EX: a read-only/read-write bit, a kernel/user bit...

FFEfLo L LD HF

Dr. Tarek Helm KFUPM-ICS
ya 81 mEmEauuE



BSaada3%

Address Translation in combined
Segmentation/Paging System

FlLe Ll

| | |
| | |
Virtual Address : : l :
Seg # | Page # | Offset | g I Frame #| Offset I
| | | T |
i I 1 Wi
i i |
| | |
I |Seg Table Ptr 1 |
i . I i
i Segment I Page 1
| Table ] Table ]
| | | I
I I I Offset Page
] v S# | ] Frame
Ly 1
| | |
| | |
| | |
| | |
| | |
| | | \./\
| | |
Program I Segmentation I Paging I Main Memory
| | |
| | |

Dr. Tarek Helm KFUPM-ICS
ye 82 WU aaamm

FFEfLo L LD HF



BSaada3%

Advantages of Segmentation + Paging

Supports both dynamic loading and linking:

[ N

— Linking a new segments needs to add a new entry to a segment

table.
« Segments can grow without having to be moved in physical memory.
— They just need more pages in physical memory.
» Protection and sharing can be done at the ‘logical’ segment level.

— Pages inherit protection and sharing attributes of the segments to

which they belong.

FFEfLo L LD HF

Dr. Tarek Helm KFUPM-ICS
ya 83 mEmEauNNE



BSaada3%

Ch: 8 Memory Management Review

* Problem: to run large processes (larger than the available physical memory) and

to increase the number of processes simultaneously loaded into the memory.

[ N

« Solution: Support non-contiguous allocation with partial loading, Swapping out

non needed processes

— Swapping problem:
« Swapping time and quantum time

* Problem: The internal and external fragmentation.

— Solution: Compaction or dividing the process memory space into smaller

pieces (Paging, Segmentation or Paging of Segments).
* Problem: Managing the allocation and accessing of page or segment tables
— Solutions: Using, caching, hierarchical page tables, hash tables, IPT.

« We should think of a way to extend the MM by using a part of the auxiliary

memory which will be called Virtual Memory.

FFEfLo L LD HF

Dr. Tarek Helm KFUPM-ICS
ya 8 mEmuwauuW



e B RERSENREE

FoLo Lol sF

Dr. Tarek Helmy@KFUPM-ICS

The End!!

85

Baaaaah

FRfL L LT



