BSaa 230

Operating Systems ICS 431

Foor L@y

Chapter 3: Process Management

Dr. Tarek Helmy El-Basuny

Dr. Tarek Helmy, ICS-KFUPM 1 WmMEaJauw

FFfL L LD HF

Process Management

od o d'a

In this chapter, we will discuss:

The Process Concept: Definition, Components, Sharing, ...

— Process states: New, Ready, Running, Waiting, Terminated

— Process Control Block (PCB): Its contents and dependency of HW and SW

Foor L@y
|

— Context switching among processes and its overhead

— Reasons for the Context Switching: Multitasking, Interrupts, Mode switch, ..

— Process Scheduling Queues: Job, Ready and Device queues

— Process Scheduling: Scheduling evaluation Criteria: CPU utilization, fairness, responsiveness

— Different Types of Schedulers: Short, Medium, and Long-Term Schedulers

— Operations on Processes: Creation, Interpretation, Execution, and Termination,

— Parent and Children Processes: Resources, execution, and address space sharing

— Reasons for child Process Termination: Voluntary and Involuntary termination

— Cooperating/Dependent & Independent Processes, advantages of cooperating Processes

— IPC through Message Passing: Blocking or non-blocking message sending and receiving

— |IPC through Buffering (Shared Memory): Buffer size constrains on the communicating processes
— Producer-Consumer processes as an example of cooperating processes & their synchronization
— Inter-Process Communication (IPC): Direct and Indirect modes

— IPC in Client-Server processes:

* Sockets, Remote Procedure Calls, Remote Method Invocation (Java)

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 2 WMUaaamwm

The Process Concept
BSaaaah

« A Program is a passive entity; just a sequence of instructions or lines
of code to solve a certain problem.

A Process is an instance of a program in execution. stack
— A Process consists of information about the running program, i.e.:
* Where in the execution sequence it is, l
* The state of the process,
» A portion of memory allocated to it,
* A bunch of resources allocated to it, T
« A Process in memory includes:
— Code/Text section (contains the compiled code of the program) heap

— Data section (stores global and static variables, allocated and
Initialized prior to execution). data

— State (Newly created, Running, Waiting, ...).

— The heap is used for dynamic memory allocation, and is managed text
via calls to new, malloc, delete, free, etc. 0

— The stack is used for local variables.

max

Foor L@y

! A process in
memory

Code

« A Thread is a child process, or lightweight process, or a sequential flow
of control within a process.

Dr. Tarek Helmy, ICS-KFUPM 3 MU aJaTWm

FFfL L LD HF

mw g gy | CaNprocesses share the code section and why?

Code (editor) [BPEIER I NESIE N 1

Foor L@y

Data (file2) State Ja

* Yes, two concurrent instances of processes can share the code
section of the parent process.

— Example: Opening two word files on the same machine, both will use the same

code section while each will have its own data and sate.

 Why? to maximize the memory utilization.

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 4 WEaJaam%

Process States: Five-Six State Model

L L LR
:) NeWIy created: admitted inferrupt exit terminated
4| — Aprocess has been created but has not yet been
d admitted to the pool of executable processes, i.e.
4| — Submission of a batch job
: — User logs on
— Process creates a child process.
* Ready

— Processes with all needed resources are
available and can be allocated.

* Running 5-States Model
— Dispatched to the CPU
 Blocked/Waiting Admit Dispatch Release

New === Realy Running == Exit

— A process that cannot execute until —

a specified event such as an 10 completion
occurs (Waiting for 1/0O).
* Suspended: i.e. due to limited memory availability.

e Terminated: Suspend
— Batch job issues a Halt instruction e A
— User logs off .
— Quit an application (0 Vh OneSuspend St
— Error and fault conditions that can not resolved. 6-States Model

Dr. Tarek Helmy, ICS-KFUPM 5 WMUaJaamWm

FFfL L LD HF

p—— Reasons for Process Termination

 Normal completion after finishing its job.

Time limit exceeded due to some fatal reasons or the process waited longer than a
specified maximum for an event.

* A process requires more memory to execute but the system fails to provide enough
memory to the process for its execution.

» Protection error has been occurred, i.e. write to a read-only file, etc.
* Arithmetic error, i.e. div/zero, etc.

» 1/O failure: When a process attempts to use an I/O device and I/O device is not working
fine at the moment. i.e, a process that wants to print a file on the printer, but the printer
is defective.

« Invalid instruction: Happens when trying to execute data or to execute an instruction
that is reserved for only OS.

« OS intervention: In some critical cases, the OS takes control of the process and stops
the execution of the process. i.e, if a deadlock occurs, or deadlock can occur,

« Parent Request: If a parent process request for terminating the child process. Then,
the child process should be terminated.

« Parent Termination: When the parent is not in CPU, child process can't exist in CPU,
child process also needs to be terminated.

* Bounds violation: When the process tries to access non assigned memory spaces or
disks.

Foor L@y
[]

Dr. Tarek Helmy, ICS-KFUPM 6 WMUWadJaWE

FFfL L LD HF

BSaa 230

Process Control Block (PCB)

Foor L@y

Dr. Tarek Helmy, ICS-KFUPM 7 WEuaaamWm

 The OS must know specific information about the process to manage it.

e« PCB (Process Descriptor in Linux) is the data structure that stores the following
information about the process:

Process ID (a unified name assigned by the OS, i.e. an integer or a table
index, etc.),

Process State (the current state, such as new, running, waiting, ready,
terminated),

Owner (identified by the owner’s internal identification, such as user’s login
name),

Program Counter (the address of the next instruction to be executed by the
process),

CPU Registers (contents of , accumulator register, index registers, stack
pointers, condition-code bits and other general purpose registers)

CPU Scheduling Information (process priority, pointers to scheduling queues
and other scheduling parameters),

Process Privileges (Processes are granted privileges in terms of the memory
that may be accessed and the types of instructions that may be executed),

Parent Process (a pointer to the PCB of the parent process),

FFfL L LD HF

BSaa 230

Process Control Block (PCB)

Foor L@y

Dr. Tarek Helmy, ICS-KFUPM 8 WMUaJaaEWm

List of children/siblings (pointers to a list of children processes of
this process),

Protection Information (description of the access rights currently
held by the process),

Memory Management Information (such as contents of base and
limit registers, pointers to page tables and segment tables),

Accounting (usage information such as amount of CPU needed &
used, time limits, memory space required),

I/O Information (list of I/0O devices allocated to this process,
pointers to wait-queues etc),

Resources controlled by the process may be indicated, such as
opened files, history of processor utilization; this information may
be needed by the scheduler.

Inter-process Communication Various flags, signals, and
messages may be associated with communication between two
Independent processes.

FFfL L LD HF

BSaa 230

Process Management

Foor L@y

Dr. Tarek Helmy, ICS-KFUPM 9 WmMUaJaEW

« We have presented:

The Process Concept: Definition, components, sharing, ...
Process states: new, ready, running, waiting, terminated
Process Control Block (PCB): its contents and dependency of HW and SW

« We are going to present:

Context switching among processes and its overhead

Reasons for the Context Switching: Multitasking, Interrupts, Mode switch,

Process Scheduling Queues: Job, Ready and Device queues

Process Scheduling: Scheduling evaluation Criteria: CPU utilization, fairness, responsiveness
Different Types of Schedulers: Short, Medium and Long-Term Schedulers

Parent and Children Processes: Resources, execution, and address space sharing

Reasons for child Process Termination: Voluntary and Involuntary termination

Process Management in Unix/Linux: (i.e. Creation, Execution, sleeping, Termination, etc.)
Cooperating/Dependent & Independent Processes, advantages of cooperating Processes

IPC through Message Passing: Blocking or non-blocking message sending and receiving

IPC through Buffering (Shared Memory): Buffer size constrains on the communicating processes
Inter-Process Communication (IPC): Direct and Indirect modes

Producer-Consumer processes as an example of cooperating processes & their synchronization
IPC Facilities in Linux

Client-Server Process Communication: Sockets, RPC, RMI (Java)

FFfL L LD HF

Process Control Block (PCB)
BSaaaah

« Some of the PCB contents are machine specific and others are OS
specific, i.e.

Foor L@y

Processor state
Program counter (PC)
Registers

> Machine specific

Memory limits (Base & Limit)

> OS specific

 When an interrupt occurs, the contents of [Acc, SP, general purpose
registers, index register, base and limit registers] must be saved Iin
the PCB to allow the process to resume correctly.

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 10 WUaaauwm

BSaa 230

Concurrency of Execution

Foor L@y

P1

P2
P3

Processes can be described as either:

Dr. Tarek Helmy, ICS-KFUPM

* Ina single processor system, if one process can run at a time, this makes
poor CPU utilization.

 The multiprocessing OS is recommended on single processor machines.

* The objective of multiprocessing is to maximize CPU utilization by
concurrent processing:

— Alternate the execution of more than one process.

« Concurrency can be achieved by switching the processor among several
processes, i.e. I/O and Computing Instructions interleaving.

« Switching the CPU from one process to another is called Context Switch.

P1 is running

e 1/O-bound process: Spends more time doing I/O than computations.
 CPU-bound process: Spends more time doing computations.

11 LR R

FFfL L LD HF

Process Context

BSaa 230

e Switching from one process to another process in multiprocessing is called “Process
Context”. This allows multiple processes to share a single CPU, and is an essential
feature of a multiprocessing operating system.

— The OS gives the CPU to another process whenever the running one is waiting for
an I/O operation to complete.

* In acontext switch, the OS stores the state of a process/thread, so that it can be
restored and resumed from the same point later.

« We say that process P is active if and only if:
— Its address space is in memory,
— Its PCB data is loaded into the CPU registers.
« When a process P is interrupted (e.g. waiting for 1/0O), then its context is not active.

« Process Context requires a certain amount of CPU time and should not be frequently
done.

Foor L@y

Running Running

Load of Save of Load s of
fro B2 into B2 fro B1

Sa ate
of i PCB 1

Idle

Dr. Tarek Helmy, ICS-KFUPM 12 WMUaJaauwm

FFfL L LD HF

R Overhead of Context Switching

* A context switch occurs whenever an interrupt or an exception occurs, or when a
process issues a system call.

e Switching from one process to another process requires a certain amount of time for
(saving and loading registers, memory maps, updating various tables and lists, etc.)

Foor L@y

PpProcess g operating system pProcess /4

iNnterrupt or systerm call

1
™ | save state into PCBg |
- idle

executimng

Ireload state from PCB.,I

iNnterrupt or systerm call executing

I save state Into PCE, I
- idle

» Ireload state from PCBOI

executing \ I

- i le

* The system does no useful work while switching.
— Losing CPU time in loading and storing registers from/into main memory.
— Switching-time depends on hardware support.

» Context switches are usually computationally intensive and much of the operating
systems design is to optimize the overhead of context switches.

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 13 WU aaamwm

A R—— Reasons for Context Switch

 There are three situations where a context switch needs to occur:

1. Multitasking/Multiprocessing: according to the scheduling policy, one

Foor L@y

process needs to be switched out of the CPU so another process can run.

2. Interrupt/Exception handling: Modern OSs are interrupt driven. This
means if the CPU requests data from a disk, for example, it does not need
to busy-wait until the read is over, it can issue the request and continue with
some other execution; when the read is over, the CPU can be interrupted

and presented with the read.

3. User and kernel mode switching: When a transition between user mode

and kernel mode is required in an OS. Some OSs may not consider a mode

transition itself a context switch.

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 14 WEaaaamn

Process Scheduling Queues
BSaaaah

 The OS maintains different queues to store the
pointers to the PCBs of all processes in the same
execution state.

* Job queue: Stores the pointers of all newly created
processes in the system.

 Ready queue: Stores the pointers of all processes
residing in main memory, ready and waiting to be
executed by the CPU.

e Device queues: Stores the pointers of all processes
waiting for a certain 1/0 device. A queue for each
device.

e Processes migrate among the various gueues.

Foor L@y

aomitied

Dr. Tarek Helmy, ICS-KFUPM

et fominaed

100 event wai

Device Queue 1
Device Queue 2
Device Queue 3

15

Ba a0

FFfL L LD HF

BSaa 230

Representation of Process Scheduling

Job Queue

Foor L@y

o ready queue

/0 queue

child

executes

interrupt

Q:curs

CPU
/O request [
time .slice
expired
fork a
child
\A{ait for an
interrupt

Dr. Tarek Helmy, ICS-KFUPM

FFfL L LD HF

16 LR R

Foor L@y

Ready Queue & Various 1/0O Device Queues

BSOS aaaahm
Ready queue header
queue header PCB- PCB.
ready head = o
queue tail ~ registers registers
mag head o e — T
tape : -
unit O tail = =
mag head +——=
urﬁfcj? P = o PCB,; PCB,. PCBg
—] —
disk head '
PCBs
terminal head —+——» T =
unit O tail 17

Dr. Tarek Helmy, ICS-KFUPM

17

Each PCB includes a pointer field that points to the next PCB in the ready queue.

Ba a0

FFfL L LD HF

BSaa 230

Process Scheduling

Foor L@y

Dr. Tarek Helmy, ICS-KFUPM 18 WU aJaamWm

Process Scheduling: means select one of the “ready” processes to run
next, this decision must:

— Improve/maximize CPU utilization (make it as busy as possible)
— Improve user response time (user’s satisfaction)
— Be fair among concurrently running processes or multi-users.

The efficiency of Process Scheduling is measured by two
parameters:

CPU utilization = Time CPU is doing useful work for the processes

Total time elapsed
Response time = (Process arrival time - Process start time)
These two goals are often contradictory

Given a set of processes, finding an optimal scheduling policy that
maximizes CPU utilization, minimizes the response time and supports
falrness among processes is a hot research issue in the OS field.

FFfL L LD HF

BSaa 230

Schedulers

Foor L@y

gueue, Ready queue, I/O queues) throughout their lifetime.

Long-term scheduler, short-term scheduler, medium-term

end

v

Dr. Tarek Helmy, ICS-KFUPM

scheduler) .
Medium-term
. Long-term |
enter
Job | Ready @
queue queue N,
Short-term
Active 1/0 /O waiting
queue(s)

19

maaa

* Since, processes migrate among the various scheduling queues (Job

« The OS must select processes from these queues in some fashion.

 The process selection is carried out by the appropriate scheduler (i.e.

0%

FFfL L LD HF

BSaa 230

Long-term Scheduler

Foor L@y

enter

Runs rarely
Controls degree of multiprocessing/concurrency

Tries to balance arrival and departure rate through an appropriate
process mix (I/O bound and CPU bound).

Job
gueue

« Long-term scheduler: acts when a new process is created, it decides
weather to be brought into the ready queue or no?

— This scheduler dictates what processes are to run on a system and the
degree of concurrency to be supported at any time — i.e. whether a high
or low amount of processes are to be executed concurrently.

— (no intelligence required) take the process that its required recourses are
available.

« Long Term Scheduler:

Long-term

end
Ready \/’Eizr\\

<—

Dr. Tarek Helmy, ICS-KFUPM

queue N
Short-term
/0 waiting | _
queue(s)

20

Ba a0

FFfL L LD HF

Short Term Sch

BSaa 230

eduler

be dispatched into the CPU).

Foor L@y

o Code to select a process from the ready queue.

Medium-term

 Short-term scheduler: Selects which process should be executed next (to

— It needs a policy for the selection to make a balance (i.e. FCFS, SJF,
SRTF, RR, Priority, etc. we will study them in chapter 5)

e The Short Term Scheduler runs very frequently and contains:
S Code to remove a process from the processor at the end of its run.
e Process may go to ready queue, or to a wait state or finish/quit.

Dr. Tarek Helmy, ICS-KFUPM

: Long-term
Job 3| Ready @
queue queue N
Short-term .
o
d
— .
Active 1/O — /O waiting | _ 3
queue(s)
o
L
L

21 LR R

Medium Term Scheduler

BSaa 230

 The mid-term scheduler exists in all systems with virtual memory support, temporarily
swaps out processes from the main memory and places them on virtual memory or vice
versa.

* It may decide to swap out a process:

Foor L@y

— Has not been active for some time,
— Has a low priority,
— With high page fault frequently,

— Taking up a large amount of memory in order to free up main memory for other
processes, swapping the process back in later when more memory is available, or

swap in partially executed swap out
swapped-out processes
ready queue ~@L » €NC
I/O waiting
queues

Dr. Tarek Helmy, ICS-KFUPM 22 WEaaJaauwm

— efc....

Yy

FFfL L LD HF

BSaa 230

A Process from its Creation to the Termination

Foor L@y

Dr. Tarek Helmy, ICS-KFUPM 23 WMUadJaaum

Operations on Processes include: Interpretation, Creation, executing, terminating:
User types a “xxx” at CLI's shell or double click on “xxx” at GUI's shell.

— Note: shell is the interface where we can interact with the OS.
The command will be parsed and interpreted by the “shell” command interpreter.

The executable program “xxx” needs to be located on disk (file system, I/O device
driver for disk).

The content of the program xxx will be loaded (load module) into memory and the
control transferred to the OS ==> process comes alive! .

Required resources will be verified and dispatch the process into the CPU for running.

During execution, the process may call OS to perform 1/O (console, disk, printer, etc.)
(system call interface, I/O device drivers).

While running the process, it may create a child process.

When the process terminates, the allocated memory and resources will be reclaimed.
(memory management).

FFfL L LD HF

Parent and Children Processes

L L LR
: « The OS allows a parent process to create
3 children processes, which, in turn may create
3 other children processes, forming a tree of
3 processes.
m| ¢ Resources sharing w
W * The parent and children share all
resources.
* The children share subset of parent’s
resources. e
e The parent and the child share no
resources.
« Execution
« The parent and children execute
concurrently. pid =7778

e The parent waits until children terminate.
 Address space

A child process is a duplicate of a parent e g
process. pid =7785_A_pid=8105

» A child has its address space loaded into
it.

-

Dr. Tarek Helmy, ICS-KFUPM

Sched
pid=0

pageout
pid = 2

dtlogin
pid = 251

Xsession
pid = 294

sdt_she
pid = 340

24 maaa

fsflush
pid =3

FFfL L LD HF

0%

BSaa 230

Child Process Termination

Foor L@y

Dr. Tarek Helmy, ICS-KFUPM 25 WM aJaamwm

Reasons for a child Process Termination:
1.
2.

Normal exit (voluntary), due to the completion of its job.

Error exit (voluntary), an error caused by the child process and can not
be served by the OS.

Fatal error (involuntary), trying to run a program that is not exist.
Killed by the parent process (involuntary) if:

The child has exceeded allocated resources.

The task assigned to the child is no longer required.

The parent is exiting.

« Some OSs do not allow a child process to continue if its parent
has been terminated (cascading termination).

FFfL L LD HF

BSaa 230

Process Management in UNIX

Foor L@y

Dr. Tarek Helmy, ICS-KFUPM 26 WA aJaTW

Basic commands of process management in Unix: (i.e. creation, execution, waiting, exiting, killing)

fork() command creates a child process such that it inherits copies of all parent’ s variables.
exec() command allows a process to “load” a child and start executing it.

exit() command causes normal process termination (closes all open files, connections, de-
allocates memory, de-allocates most of the OS structures supporting the child process), and
checks if the parent is alive then it holds the result value until the parent requests it.

wait() command puts the parent to sleep waiting for a child’s result.

ptrace() command allow a parent process to observe and control the execution of a child
process.

nice() command can be used to reduced the priority of a process and thus be ‘nice’ to the
other processes.

sleep(), command delays the execution start time of a command by some number of
seconds that the user specifies.

kill() <pid> command will terminate a process with the process id <pid>. The pid of a
process can be obtained using the ‘ps’ command.

ps command gives information about the process including the pid, terminal name, time of
creation and name of the process, etc...

parent //— resumes

= wait

FFfL L LD HF

Foor L@y

Dr. Tarek Helmy, ICS-KFUPM 27 WMEaaJaamWm

Process Management in Linux-1
4 d a0

Create a process by running a program (writing its name then press enter key from the
CLlL)

You can run many processes either foreground or background concurrently.

You can also move the process from foreground to background by the commands fg
process name or bg process name but you need to close the process CTRL+Z first.

Use top command to tell the user about all the running processes in Linux, or tasklist in
windows. It displays:

COMMAND

65 Xorg
ubuntuonse
gnome - te

top

init
kthreadd
ksoftirqqd
Ff.OFLt"rl.l

Where, PID is the user ID number. User 5 the owner of the process PR is the priority
(20 high to -20 low).

NI is the nice value (priority index and can be changed like priority) of the process,
VIRT is the amount of the virtual memory taken by the process in KB.

RES is the physical memory used in KB.

SHR is the shared memory used.

S is the status of the process (sleeping/S or running/R or traced/stopped/T or ...
%CPU and %MEM are the % of CPU time and memory used. TIME+ is the total time.

cooocooool
nununnunaoununna
DGDQEGDHH
2000 WWWO[=
20000 WALHKE
20000000

FFfL L LD HF

Process Management in Linux-2

BSaa 230

— Use ps command displays the process status. Like task manager in

windows machine.

— ps ux to display the status of all the processes under this user, or ps PID for

Foor L@y

only one process. You can get the PID of the process by pidof process

name.

— kill command terminates a process running on the Linux machine. i.e. kill

PID, or taskkill /PID in windows
— nice command starts a process with the given priority.

— renice changes the priority of a process (changes from -20 to 19, the default

value is 0). Its syntax is nice —n nice-value process-name.

— df gives us the free HD space on the system.

— free gives us the details of the free RAM space on the system.

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 26 WM aJaamWm

pep—— Independent & Cooperating/Dependent Processes

* Independent process: a process that is independent of the rest
of the processes. It does not affect or be affected by the
execution of another process. OS support is:

— Its state is not shared in any way by any other process.
— It does not share any information with other processes.

— Itis ok to run independent processes in parallel on separate
processors.

« Dependent/Cooperating process: a process that affect or be
affected by the execution of another process. OS support is:

— Passing information between processes

Foor L@y

— Making sure that processes do not interfere with each other
— Ensuring proper sequencing of dependent operations

U Why do we need Cooperating Processes?

* Information sharing: several processes may be interested in the
same piece of info.

» Computation speed-up: for a particular process to run faster, it
could be broken into sub-processes, each of which executes in
parallel especially if the computer has multiple processing

elements (CPU'’s or I/O channels). - - - __________

» Modularity: helps construct the program in a modular fashion
dividing the system functions into separate cooperating processes.

on which to work at one time. The user may be editing, printing,
compiling in parallel. This will enhance the user’s satisfaction. T s

« Convenience: even an individual user may have many processes e —

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 29 WMUadJaamm

p—— Inter-Processes Communication Models

 Inter-process communication is the mechanism provided
by the OS that allows processes to communicate with P
each other. i.e. Communcaon

_ Process! ¢ Process?
— A process letting another process know that some
event has occurred or transferring of data from one
process to another

Foor L@y

. . . Models of Interpwcess Communication
e The models of inter-process communication:

U Shared Memory Model

e Shared memory is the memory that can be s st
simultaneously accessed by multiple processes.
Shiared Memery Process P2
 Advantage of Shared Memory Model [

 Memory communication is faster on the shared
memory model as compared to the message
passing model on the same machine.

 Disadvantages of Shared Memory Model

» All the processes that use the shared memory
model need to make sure that they are not Kemel Kemel
writing to the same memory location.

Process P2

Message Queue

M M| m

* Required synchronization and memory
protection that need to be addressed.

Shared Memory Model Message Passing Mode

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 30 MO aaaTWm

Foor L@y

BSaa 230

Inter-Processes Communication Models

Message Passing Model

Multiple processes can read and write data to the
message queue without being connected to each
other.

— l.e. processes P1 and P2 can access the message
gueue and store and retrieve data.

Messages are stored on the queue until their receiver
retrieves them.

Message queues are quite useful for inter-process
communication and are used by most OSs

— Advantage of Messaging Passing Model

« The message passing model is much easier to
implement than the shared memory model.

— Disadvantage of Messaging Passing Model

 The message passing model has slower
communication than the shared memory

model because the connection setup takes
time.

Dr. Tarek Helmy, ICS-KFUPM

Frasess P1

Fragess P2

Message Quete

i

m]

Kem

Wessage Passing Nodel

Ba a0

FFfL L LD HF

Cooperating Processes Communication

BSaa 230

o Cooperating processes need to communication:
1. Message Passing (MP) through the OS kernel.

— Processes communicate by sending/receiving messages through the OS

Foor L@y

kernel.
Sending Q

Send -

Receiving Q

<« Receive

2. Through Distributed Shared Memory (DSM)
— Processes communicate through a “virtual shared memory”.

O To allow cooperation, there should be some mechanism for communication

(called IPC: Inter-Process Comm.) and to synchronize their actions.

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 32 WU adaauWm

Cooperating Processes: Message Passing

BSaa 230

 Messages exchanged by communicating processes reside in a temporary
gueue/buffer.

» A buffer/queue of messages could be provided by the sender’s kernel,
receiver’s kernel, and/or in the communication network.

« Can be logically combined into one big buffer.
* A queue/buffer assigned to the processes implemented in one of three ways:

1. Zero capacity: Max. length is 0 message (means no buffering), sender must
wait for receiver (rendezvous).

2. Bounded capacity: Finite length of n messages can be buffered, sender
must wait if the queue is full.

3. Unbounded capacity: Infinite length, means can buffer any produced
message, sender never waits.

Foor L@y

Possikle
synchroni=zation
pPoint —] =

Sender I

eceiver

Dr. Tarek Helmy, ICS-KFUPM 33 WA aaauWm

FFfL L LD HF

BSaa 230

Blocking and Non-Blocking Message Passing

Foor L@y

Dr. Tarek Helmy, ICS-KFUPM 3 WUaaauWm

Message passing supported in two different modes (either

blocking/synchronous or non-blocking/asynchronous).

Send and receive primitives may be either blocking or non-blocking.

Blocking/synchronous send: means the sending process is blocked

until the message is received by the mailbox/buffer or the receiving

Process.

Non-blocking/asynchronous send: means the sending process

sends the message and restarts operation.

Blocking receive: means the receiver process blocked until a

message is available in the buffer.

Non-blocking receive: means the receiver process retrieves either a

valid message or null.

FFfL L LD HF

IPC using Message Passing

BSaa 230

 Message passing is a general method for Inter-process communication (IPC)
— For processes inside the same computer to communicate.
— For processes in a distributed system environment.

Foor L@y

 Major issues of Message Passing Communication
— Is it direct or indirect addressing?
— Is it blocking or non-blocking communication?
— Is it reliable or unreliable communication?
— Is it buffered or un-buffered communication?

* Purpose of IPC by using Message Passing
— Data Transfer
— Sharing Data
— Event notification
— Synchronization
— Mutual Exclusion
— Process Control

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM B Jam%

BSaa 230

Direct Process Communication

Foor L@y

Dr. Tarek Helmy, ICS-KFUPM 36 WU aaaTW

If P and Q processes wish to communicate, they need to:
— Establish a communication link between them
— Exchange messages via send and receive commands

The IPC mechanism allows processes to communicate and to synchronize
their actions.

IPC facility provides two operations:

— Send(message) to a process — message size may be static or variable.
— Receive(message)
Implementation of the communication link
— Physical (e.g., shared memory, hardware bus)
— Logical (e.g., initiating sockets, ports,..)

The OS provides IPC mechanisms for processes to communicate and to
synchronize their actions without sharing the same address-space.

Good for distributed environment.

FFfL L LD HF

Direct Process Communication

BSaa 230

* Processes must name each other explicitly:
— Send(P, message) — send a message to process P.
— Receive(Q, message)- receives a message from process Q

Foor L@y

— Receive(ID, message)- receives a message from the sender with ID.
* Properties of communication link

— Links are established automatically.

— Alink is associated with exactly one pair of communicating processes.

— Between each pair there exists exactly one link.

— The link may be unidirectional, but is usually bi-directional.

— Receiver may not need ID of the sender (known by default).
Disadvantage of Direct process Communication:

e A process must know the name or ID of the process it wishes to
communicate with.

e They can't be easily changed since they are explicitly named in the send and
receive.

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 37 WmMAaaauWm

Indirect Process Communication

BSaa 230

 Messages are directed to and received from mailboxes or Ports.

A mailbox is an object into which messages can be placed by processes and
from which messages can be removed by other processes.
 Ownership of the Mailbox:
— Process owns it:
— Only the owner may receive messages through this mailbox.
— Other processes may only send.
— When process terminates any “owned” mailboxes are destroyed.
— System owns it:
— Process that creates mailbox owns it and receives through it

— When the process terminates the system transfers ownership to the
parent process.

IPC mechanism provides operations to:
— Create a new mailbox
— Send and receive messages through the mailbox.
— Destroy a mailbox
Primitives are defined as:
— Open (mailbox_name);
— Send (A, message) — sends a message to mailbox A.
— Receive (A, message) - receives a message from mailbox A.

Foor L@y
[)

Dr. Tarek Helmy, ICS-KFUPM 33 WmEaa

FFfL L LD HF

Indirect Process Communication

BSaa 230

* Properties of communication link:
— Each mailbox has a unique ID.
— Processes can communicate only if they share a mailbox.
— A link may be associated with many processes.
— Each pair of processes may share several communication links.
— Link may be unidirectional or bi-directional.
e Mailbox sharing Problems:
— Py, P,, and P; share mailbox A.
— P, sends;
— Who gets the message (P, and/or P;?)
e Solutions:
— Allow a link to be associated with at most two processes.
— Allow only one process at a time to execute a receive operation.
— Allow the system to select randomly the receiver.
— Sender is notified who the receiver was.

Foor L@y

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 39 WU aJaaTWm

Cooperating Processes: Producer-Consumer

BSaa 230

e As an example of cooperating processes: a producer process produces
information that is consumed by a consumer process.

« Cooperation processes must use IPC Mechanisms to coordinate their execution,
l.e..

— Message Passing Interfaces, i.e. Sockets, Streams, Pipes, etc.
— Shared Memory: Non-message passing systems
* i.e., if a buffer is used by the producer and consumer process to communicate.

 The producer and consumer processes must be synchronized based on the size
of the used buffer. i.e.

— With unbounded-buffer where no practical limit on the size of the buffer.

* The consumer process may have to wait for a new item, if the buffer is
empty, but the producer always produces items.

— With bounded-buffer where there is a fixed buffer size.

» The producer process must wait if the buffer is full and the consumer must
walit if the buffer is empty.

— The buffer may be either provided by the OS IPC facility, or coded by the
application programmer using shared memory.

« Dangers of cooperating processes without synchronizing of their processing

Foor L@y

— Data corruption, deadlocks, increased complexity.

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 40 WMAaaaTm

The Producer-Consumer Processes

BSaa 230
Producer Consumer
Process Shared Buffer Process

—l—1 @

e From time to time, the producer places an item into the buffer.

Foor L@y

e The consumer removes an item from the buffer.

e Careful synchronization/coordination is required.
e The consumer must wait if the buffer is empty.

e The producer must wait if the buffer is full.

e Typical solution would involve a shared variable called count
to monitor the buffer size.

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 41 WmMuU'aa'aum

Bounded-Buffer Solution

BSaa 230

» If the shared buffer is implemented as a circular array with two logical
pointers, in & out.

— In points to the next free position in the buffer where the producer puts an
item.

Foor L@y

— out points to the first full position in the buffer where the consumer can
get.

 When in = out, the buffer is empty.
 When ((in+1) % BUFFER _SIZE) = out), the buffer is full.

Buffered
ltems

There are Free
space

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 42 WUaa'auwm

L LR

The Producer Consumer Processes

: A Producer process "produces™ information
a |to be "consumed” by a Consumer process. #define BUFFER_SIZE 10
d| 1tem nextProduced; [E——— DATA
B hite (D) { SIELC } item;
. while (counter == item buffer[BUFFER_SIZE]:
BUFFER_SIZE): mt I = OF
_ int out = O;
/*do nothing*/
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE; item nextConsumed;
/*incremented every time we) CONSUMER
add element*/ while (1) {
counter++:} while (counter == 0);
- /*do nothing*/
nextConsumed = buffer[out];
out = (out + 1)%
\ BUFFER_SIZE;
Producer Consumer /*decremented every time we
remove element*/
Process \ Process counter--;
, }

Dr. Tarek Helmy, ICS-KFUPM

Ba a0

FFfL L LD HF

P —— IPC Facilities in Linux

Foor L@y

Dr. Tarek Helmy, ICS-KFUPM 4 WE'aaaTm

* The Linux kernel provides the following IPC mechanisms:

Signals: the kernel notifies a process when an event occurs by interrupting the
process's normal flow of execution and invoking one of the signal handler functions
registered by the process or the default signal handler by the kernel.

Named Pipes or FIFOs: Allows two processes that are not related to
communicate. The processes communicate using named pipes by opening a special
file known as a FIFO file. One process opens the FIFO file for writing while the other
process opens the same file for reading.

Anonymous Pipes: Provides a mechanism for one process to stream data to another
process. A pipe has two ends associated with a pair of file descriptors. One for reading
and the other for writing.

Message Queues: One process writes a message packet on the message queue and
exits. Another process can access the message packet from the same message queue
at a latter point in time.

Shared memory: Allows one process to share a region of memory in its address space
with another. This allows two or more processes to communicate data more efficiently
amongst themselves with minimal kernel intervention.

Network Sockets: Network Sockets API provides mechanisms for communication

between processes that run on different hosts on a network.

* For more information of how to create and use: https://www.tldp.org/LDP/Ipg/node7.html
or http://man7.org/conf/lca2013/IPC_Overview-LCA-2013-printable.pdf or
https://www.tutorialspoint.com/unix_commands/ipcs.htm

FFfL L LD HF

BSaa 230

Pipes for Processes Communication

Foor L@y

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

char *message = "This is a message!!!" ;

main()
{ char buf[1024] ;
int fd[2];
pipe(fd); /*create pipe*/

if (fork() '= 0) { /* | am the parent */
write(fd[1], message, strlen (message) + 1) ;
}
else { /*Child code */
read(fd[0], buf, 1024) ;
printf("Got this from MaMal!!: %s\n", buf) ;
}

* Pipe sets up communication channel between two (related) processes.
 One process writes to the pipe, the other reads from the pipe.

Process Process
Pipe
A) { B
Process Process
Process Process

o Pipe Pipe ‘ Pipe °

Sometimes useful to connect a set of
processes in a pipeline.

Process A writes to pipe AB,
Process B reads from AB and writes to BC

Process C reads from BC and writes to CD.

Dr. Tarek Helmy, ICS-KFUPM

Ba a0

FFfL L LD HF

Foor L@y

Dr.

BSaa 230

Shared Memory Processes Communication

Common chunk of read/write memory among processes, here’s a ¢ code
example to create a shared memory:

int shmget(key t key, size t size, int shmflg);

Example:

key t key;

int shmid;

key = ftok(“<somefile>", “A%);

shmid = shmget(key, 1024, 0644 | IPC_CREAT);

MAX

Create
Attach

Attach

Process 1 Process 2

Process 3 Process 4 Process 5

Tarek Helmy, ICS-KFUPM Waaa

FFfL L LD HF

BSaa 230

Implementation Questions

Questions

How are links
established?

Foor L@y

Direct Communications

Automatically established between
every pair of processes that want to
communicate

d [
< »

Indirect Communications

Messages are sent to and received
from mailboxes/ port.

Can a link be
associated with
more than two
processes?

No — a link is associated with
exactly 2 processes

P »
< »

Yes - a link may be associated With
more than 2 processes

—-éz

How many links
can there be
between every
pair?

Exactly one link exists between
each pair of processes

< [
<« »

A number of links may exist between
each pair of communicating processes,
with each link corresponding to one
mailbox
—
L —
I

[]
—

Send Receive
Primitives?

Send (P, message)

// send a message to P
Receive (Q, message)
/lreceive message from Q

Send (A, message)

//send a message to mailbox A
Receive (A, message)

/lreceive a message from mailbox A

Dr. Tarek Helmy, ICS-KFUPM

47 BOaaa0%w

FFfL L LD HF

BSaa 230

Client & Server Processes Communication

Foor L@y

Dr. Tarek Helmy, ICS-KFUPM

The server’s process provides some services

— It must be started first,

— It waits for connections,

— Must be secure, reliable and perform well,

— It does not know who will connect with or when it will connect?
The client’s process connect to a running server’s process

— It knows who it is connecting to,

— ltinitiates interaction,

— Must be easy to use,

— Should be portable to run on many platforms.

Both client and server processes agree on how to exchange data

Once a socket (communication channel) is created and a connection established.
Server’s process:

Listens for connection requests on a specified port,

Accepts connection requests and gets a socket for each connection,
Reads and writes data as required,

Closes the connections,

Deletes the sockets.

Client’s process:
Connects to a server on a specified IP and Port (client’s port is dynamically assigned)

Reads and writes data as necessary,
Disconnects from the server,
Deletes socket.

48

Ba a0

FFfL L LD HF

BSaa 230

Client-Server Processes Communication

Foor L@y

e Using Sockets
» Using Remote Procedure Calls

e Using Remote Method Invocation (Java)

Dr. Tarek Helmy, ICS-KFUPM

FFfL L LD HF

Ba a0

Socket Programming using TCP

offers a limited amount of service when messages are exchanged between
computers in a network that uses the Internet.

L L LR

: . Socket: a door between a process and a Transmission Protocol. Two types of

o transmission service via socket are (UDP or TCP):

: . UDP (User Datagram Protocol) [does not guarantee a reliable transfer of bytes] it
o

L

. TCP guarantees delivery of data and also guarantees that packets will be delivered
in the same order in which they were sent.

controlled by controlled by

application process process application
developer ocke g developer
controlled by TCP with TCP wit controlled by
operating buffers, i En buffers, operating
system variables variables system
host or host or
server server
agreed po
socket\@—.IDK any port C| saeket [
M a
message 5
client server d
|>§ other ports | 5
Internet address = 138.37.94.248 Internet address = 138.37.88.249 4
|
Dr. Tarek Helmy, ICS-KFUPM 50 M maaamEs

Socket “Communication Channel”

— The socket 161.25.19.8:1625 refers to
port 1625 on host 161.25.19.8

ERSaaaG%

L |

: A socket is identified by an IP address —
4 concatenated with a port. (146.86.5.20)
<

|

|

socket

« The server waits for incoming client requests (14686.5.201629)

Web server

by listening to a specified port. Usually many (161.25.19.9)

ports below 1024 are well known and used

for standard services. FTP [21], Telnet
server [23], http server [80], SMTP [25],
POP3[110],

socket
(161.25.19.8:80) “

 When a client initiates a request for

connection, it is automatically assigned a port
(>1024) by the host computer.

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 51 WmMU'aJaamm

Socket “Communication Channel”

L L R RN

: Host X Web Server
o Process 1 Process 2
4

4

J

d

TCP TCP

A client on host X [164.86.5.20] wants to establish a connection with the
Web server [161.25.19.8] which is listening to port 80.

The host X may be assigned port 1625.

The connection will consist of a pair of sockets:

The socket 164.86.5.20:1625 refers to port 1625 on host X and
161.25.19.8:80 on the Web server.

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 52 WM aJaauwm

Establishing a Simple Server (Stream Socket) in Java
BSaaaah

Stepl: Create a ServerSocket Object

— ServerSocket s = new ServerSocket(port)

Foor L@y

Step2: Create a Socket and Wait for a Connection

— Socket connect = s.accept()

Step3: Associate Input and Output Stream with the
Socket

— connect.getinputStream

— connect.getOutputStream

Step4: Process Connection

Step5: Close Connection

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 5 WO aJamWm

Establishing a Simple Client (Stream Socket) in Java

BSaa 230

Stepl: Create a Socket to make connection

— Socket connect = new Socket(Server IP, port)

Foor L@y
[]

Step2: Associate Input and Output Stream with the
Socket

— connect.getinputStream

— connect.getOutputStream

Step3: Process Connection

Step4: Close Connection

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 54 WuwaJaamm

BSaa 230

Socket Communication Steps

Foor L@y
[]

Server

* Socket system call: Create a socket
Bind system call: A name and an address are bounded to a socket.

o Listen system call: The server must listen to its socket, by telling the kernel that it
is ready to accept connections from clients.

* Accept system call: The server can accept or select connections from clients.

« Connect system Call: The client connects to the socket. It needs to provide the
socket address by which it can reach the server.

 Read/Write system call: Client and server communicate through read/write
operations on their respective sockets.

* Close system call: Terminates a connection and destroy the associated socket.

Request
Rendezvous LH\\Reply

Synchronization point — fa’ Communication \\

| socket [~ bind [listen [acciept » read | ’)

| '
| i '
|

|
| ! \

socket

Client

Dr. Tarek Helmy, ICS-KFUPM

h 4 K <
»connectl ™ write ——®» read close |

FFfL L LD HF

55 BOaaa0%w

BSaa 230

Remote Procedure Call (RPC)

Foor L@y

e Remote Procedure Calls are much
more complex than a local
subroutine or a method call.

e Subroutine and co-routine calls are
generally made within an application
or between co-applications that run
on a the same system.

Application

ij—

Main
Body

clients.

 The server also must handle
simultaneous requests from many

* This also implies a need for
synchronization among requests.

Main
Body

Client

Dr. Tarek Helmy, ICS-KFUPM

e RPC'’s, on the other hand, are made €=—————————A\pplication —=——

between systems that are
interconnected by a network.

Network Server

56 LR R

FFfL L LD HF

Remote Procedure Calls: Stubs

BSaa 230

* Client makes procedure call (like a local procedure call) to the client stub.

A stub is a piece of code that converts parameters passed between client
and server during a remote procedure call (RPC).

Foor L@y

 Client Stub locates the server and the port on the server.
 Client Stubs take care of packaging arguments and sending messages.
« Packaging parameters is called marshalling

 The server-stub receives the message, unpacks the marshaled parameters,
and invokes the procedure on the server and then return the value.

i 72— ‘ < Procedure
Main T Client \ Server
Body —1 L— Stubs / Stubs L]
— o
— ST Procedure d
— .
Client Network Server :
L
Dr. Tarek Helmy, ICS-KFUPM 57 WmWaagawwW

BSaa 230

Steps of a Remote Procedure Call

1.

2.

Foor L@y

Client procedure calls client’s stub in
normal way.

Client’s stub builds/packs a message
and calls it local OS.

Client's OS sends the message to the
remote OS.

The remote OS gives the message to
server’s stub.

Server’s stub unpacks parameters,
calls server.

Server does work, returns result to the
stub.

Server’s stub packs it in message, calls
local OS.

Server's OS sends message to client's
OS.

Client's OS gives message to client
stub.

Client’s stub unpacks result, returns to
client.

Dr. Tarek Helmy, ICS-KFUPM

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to
matchmaker to
find port number

kernel places

messages

From: client
To: server
Port: matchmaker
Re: address
for RPC X

3

port Pin user
RPC message

kernel sends
RPC

kernel receives
reply, passes
it to user

server

matchmaker
receives
message, looks
up answer

matchmaker

From: server
To: client
Port: kernel
Be:RPC X
Port: P

From: client
To: server
Port: port P
<contents:

From: RPC
Port: P
To: client
Port: kernel
<output>

replies to client
with port P

daemon
listening to
port P receives
message

daemon
processas
request and
processes send
output

58

FFfL L LD HF

Ba a0

Marshalling

BSaa 230

 Problem: Different machines have different data formats.

— Intel: little endian, SPARC: big endian

Foor L@y

e Solution: Use a standard machine independent representation.
— Example: eXternal Data Representation (XDR)

— XDR is a data abstraction needed for machine independent

communication.

« Marshalling: Transform parameters/results into a byte stream.

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 59 WmuUaJamwm

BSaa 230

Java RMI

Foor L@y

 RMI allows an object running in one JVM to invoke methods on an object
running in another JVM.

« RMI can be used to allow object’s methods to invoke other object’s methods
running in the same or remote machine.

 The RMI mechanism is basically an object-oriented RPC mechanism.
* Objects can be passed as arguments and returned as results

* Any Java object can be passed during invocation including primitive types,
core classes, user-defined classes and Java-Beans

e Syntax of RMI is same as the local method invocations
e RMI operates only in Java-Java domain.

Java [2
program

Dr. Tarek Helmy, ICS-KFUPM

Remote
‘:m:

FFfL L LD HF

60 LR R

RMI Registry

BSaa 230

 The server’s object must register itself under some name where it

can be reached.

Foor L@y

 Under RMI, this is done with the RMI Registry, a separate process

that must be running, usually on the server machine.

 Once an object has been registered, any other objects can use the

Object Registry to obtain access to its methods remotely using the

name of the object.

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 61 WMUWaJaWW

RMI Layers

BSaa 230

Foor L@y

Dr. Tarek Helmy, ICS-KFUPM

Ba a0

FFfL L LD HF

BSaa 230

Marshalling Parameters

client

remote object

-

-

val = server.someiethod(A.B) boolean someMethod (Object x, Object vy)

i

implementation of someMethod

3

stub

b
| skeleton |

Foor L@y

5N

| AL B, someiMethod |

| boolean return value |

to the client.

Dr. Tarek Helmy, ICS-KFUPM 63 WM aJaWmW

e Stub: is responsible of creating a parcel consisting of the name of the method to be

invoked on the server and the marshaled parameters for the method.
e Stub locates the server, sends the parcel to the skeleton of the server.

 The skeleton is responsible for un-marshalling the parameters and invoking the

desired method on the server.
 The skeleton then marshals the return value into a parcel and send it to the Stub.

 The stub receives this message, unpacks the marshaled return value and passes it

FFfL L LD HF

RPC/RMI Differences

BSaa 230

« Client /Server?
— RPC is typical client/server application
« Server defines procedure.
* Client invokes it.
— But RMI provides more flexible way.
* Dynamic class loading
o Safe & Security?
— RPC Security mechanism
* Operating System based
— RMI Security mechanism
« Uses Java’s built in Security features
* A security manager has to be installed before RMI can be used
e Object -Oriented?
— RPC is not Object-Oriented.
— RMI is Object-Oriented.
e Language independent?

— RPC was designed for a heterogeneous environment. Use eXternal
Data Representation (XDR) protocol to standardizes the representation
of data.

— RMI was designed for JAVA to JAVA environment.

Foor L@y

FFfL L LD HF

Dr. Tarek Helmy, ICS-KFUPM 64 WA aJaTN

BSaa 230

Pop-up Quiz

Foor L@y

enter

vevv..... Scheduler

N—

....... Scheduler

1/0O devices

|
(o)

* On the following diagram, fill the dots in every rectangle with the name of the queue
and the scheduler. Explain the main function of every queue and scheduler.

end

__/

Dr. Tarek Helmy, ICS-KFUPM

65

maaa

A 4

FFfL L LD HF

0%

RS aaaah

FoLe L

The End!!

Dr. Tarek Helmy, ICS-KFUPM

66

Baagaaah

FFfFL L

	Slide Number 1
	Slide Number 2
	The Process Concept
	Can processes share the code section and why?
	Process States: Five-Six State Model
	Reasons for Process Termination
	Process Control Block (PCB)
	Process Control Block (PCB)
	Slide Number 9
	Process Control Block (PCB)
	Concurrency of Execution
	Process Context
	Overhead of Context Switching
	Reasons for Context Switch
	Process Scheduling Queues
	Representation of Process Scheduling
	Ready Queue & Various I/O Device Queues
	Process Scheduling
	Schedulers
	Long-term Scheduler
	Short Term Scheduler
	Medium Term Scheduler
	A Process from its Creation to the Termination
	Parent and Children Processes
	Child Process Termination
	Process Management in UNIX
	Process Management in Linux-1
	Process Management in Linux-2
	Independent & Cooperating/Dependent Processes
	Inter-Processes Communication Models
	Inter-Processes Communication Models
	Cooperating Processes Communication
	Cooperating Processes: Message Passing
	Blocking and Non-Blocking Message Passing
	IPC using Message Passing
	Direct Process Communication
	Direct Process Communication
	Indirect Process Communication
	Indirect Process Communication
	Cooperating Processes: Producer-Consumer
	The Producer-Consumer Processes
	Bounded-Buffer Solution
	Slide Number 43
	IPC Facilities in Linux
	Pipes for Processes Communication
	Shared Memory Processes Communication
	Implementation Questions
	Client & Server Processes Communication
	Client-Server Processes Communication
	Socket Programming using TCP
	Socket “Communication Channel”
	Socket “Communication Channel”
	Establishing a Simple Server (Stream Socket) in Java
	Establishing a Simple Client (Stream Socket) in Java
	Socket Communication Steps
	Remote Procedure Call (RPC)
	Remote Procedure Calls: Stubs
	Steps of a Remote Procedure Call
	Marshalling
	Java RMI
	RMI Registry
	RMI Layers
	Marshalling Parameters
	RPC/RMI Differences
	Pop-up Quiz
	Slide Number 66

