BSaada3%

Operating Systems ICS 431

[N

Chapter 11: File System Implementation

Dr.Tarek Helmy EIl-Basuny

FrLLog@w

1%
Dr. Tarek Helmy, KFUPM-ICS B g aaEn

BSaada3%

Chapter 11: File System Implementation

How are the file system modules implemented and organized?

[N

What kind of on-disk and in memory data structures used to implement a file
system?
* How disk blocks are allocated to files so that disk space is used effectively and

files can be accessed quickly?
— There are three allocation methods:
« Contiguous Allocation
 Linked Allocation
* Indexed Allocation
 How does the file system manage the free blocks?

 How to improve the efficiency, performance, and recovery of the file system?

N
FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS B agaa0%

[N

Dr.

BSaada3%

File System Modules Organization: Layered Approach

File system modules organized into layers where:

« Each layer uses the features of lower layers to create new
features to be used by upper layers.

Application Programs: The programs that are making a file request.

Logical file system: Manages file-system structure through a FCB,

directory structure, protection and security issues.

File-organization module:

* Reads the FCB maintained in the directory so that it knows
about files and the logical blocks where information about that
file is located. Translates block’s logical addresses to physical
block addresses.

+ It also manages the free spaces on the disk.

Basic file system module:

* Issues high level commands to specific device driver to read and
write physical blocks. i.e. (drive 1, cylinder 60, track 4, sector 10)

I/O control:

« Acts as a translator, it uses device drivers and interrupt handlers
to transfer information between the MM and the disk system.

* It receives high level commands i.e. retrieve specific block and
outputs low level instruction.

Tarek Helmy, KFUPM-ICS

application programs

logical file system

:

file-organization module

:

basic file system

;

/O control

;

devices

w
FFEfLo L LD HF

O a0

BSaada3%

File System Implementation: On-Disk Structure

Several on-disk and in memory data structures are used to implement a file system.
These structures vary depending of the OS and the file system.
The on-disk data structures include:
. Boot Control Block: It contains:
 Information needed by the OS to boot. If the disk does not contain an OS, this
block will be empty. It is in zero block of first partition. It is called boot block in
the Unix File System (UFS) and Partition boot sector in NTFS.

* NTFS stands for New Technology File System. It is more better than
FAT/FAT32, it supports Unicode filenames, proper security, compression
and encryption.

Volume Control Block: it contains:
» Details information about partitions such as the number of blocks in the
partition, size of blocks, free block count and free block pointers.
* e.g., super block in UFS and Master File Table in NTFS.
« Directory Structure Table: Is used to
« Organize the files within the directory.

[N
[]

. File Control Block: It contains:
* File details such as file’s owner, size and location of data blocks.
* Itis called inode in UFS.
* In NTFS this information stored within Master File Table, NTFS uses relational
database structure with a row per file.

AN
FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS B agaa0%

BSaada3%

A Typical File Control Block

file permissions

[N

file dates (create, access, write)

file owner, group, ACL (Access Control List)

file size

file data blocks or pointers to file data blocks

File Control Block (FCB): a storage structure contains information about a file.

Dr. Tarek Helmy, KFUPM-ICS

(@]
FFEfLo L LD HF

O a0

[N

BSaada3%

File System Implementation: in-Memory Structure

The in-memory information is used for both file-system management and
performance improvement via caching.

Caching the on desk information speeds up the searching process in the
data structures used to implement the file system.

In-memory Partition Table: Contains information about each mounted

partition.

 Mounting a file system associates it with a directory in the existing file
system tree. once mounted, the file system becomes accessible.

In-memory Directory Structure: Holds information about recently accessed

directories.

In-memory System-wide Open-file Table: Contains a copy of the FCB of each

open file.

In-memory Per-process Open-file Table: Contains a pointer to the opened file

entry of this process in the system-wide open-file table.

Buffers used to hold the file system blocks for reading.
6

Dr. Tarek Helmy, KFUPM-ICS B agaa0%

4
4
4

o

a

L]

BSaada3%

Virtual File System

[N

systems.

« Modern OSs must support multiple types of file systems, i.e. (Hierarchical File
System or HFS for Mac OS), (FAT, NTFS for Windows), (Ext* family for Linux),
Network File Systems, Flash File System, Tape File Systems, etc.).

« Virtual File Systems (VFS) provide an object-oriented way of implementing file

« AVFS s an abstraction layer on top of a more concrete file system.

* VFS used to bridge the differences in file systems, so that applications can access
files on local file systems of those platforms without having to know what type of file

system they are accessing.

« The VFS allows client applications to access different types of concrete file systems

in a uniform way.

« AVFS can be used to access local and remote storage devices transparently without
the client application noticing the difference.

file-system interface

VFS in

terface

local file systemrm
tyvpe 1

local file system

typ

a2

remote file system
tvpe 1

Nnetwvwork

Dr. Tarek Helmy, KFUPM-ICS

O a0

FFEfLo L LD HF

BSaada3%

Disk Blocks Allocation Methods

* Allocation method refers to how disk blocks are

[N

methods:

« Contiguous allocation

 Linked allocation

 Indexed allocation

Dr. Tarek Helmy, KFUPM-ICS

allocated to files so that disk space is used effectively
and files can be accessed quickly. There are three

oo
FFEfLo L LD HF

O a0

BSaaaah _ _]
Contiguous Allocation of Disk Space

A file occupies contiguous blocks on

disk. ; e
— This is similar to contiguous K_//

[N
[]

memory allocation to a process’s count
pages. olJ 10J 2017 3]
- : f
« Efficient because |tloffe.rs rapdom 41 5[ERER
access to any location in a file.
— Block i of a file is located at b+i 8] o 1o J11[]
where b is the starting location tr
of the file. 120113114115]

« Faster in accessing as blocks will be 1607170118119
guickly read one next to the other. | i
mean the conversion of logical to 20 121 122[123[]
physical address will be easy.

« When a new file is to be written, the 24D?5D26DQ7D
file system determines where to put list

i 28 129[130[131[]
— Algorithms include best-fit and ~

directory

file
count
tr
mail
list
f

start length

0 2
14
19
28
6

o = G w

first-fit (which is most common).

Dr. Tarek Helmy, KFUPM-ICS

({o]
FFEfLo L LD HF

O a0

BSaada3%

Drawbacks of Contiguous Allocation

Fragmentation

— “blocks” may be too big for a given file and therefore a small
fragment is left.

[N

« Compaction/de-fragmentation will be used occasionally to eliminate
fragments.

— This requires a disk down time.

* When the file is first created, its size must be provided or estimated.
— Program sizes can be pre-determined, but data files can not.

— If the estimation is too low, sufficient space will not be made
available later (specially if best fit was used), if it is too high,
internal fragmentation occurs.

FrLLog@w

10 W
Dr. Tarek Helmy, KFUPM-ICS B g aaEn

L LRSS 3 3
Chapter 11: File System Implementation

Last time, we discussed:

— What is the main function of the file system modules (Logical file system: manages file-system, File-
organization: Translates block’s logical addresses to physical block addresses, Basic file system:
Issues high level commands to specific device driver to read and write, I/O Control: Transfer
information between the MM and the disk system)?

— How are the file system modules organized? Layering approach
— What kind of on-disk data structures used to implement a file system?
« Boot Control Block: Contains booting information.
* Volume Control Block: Contains information about partitions (# of, size of, # of free) blocks.
« Directory Structure Table: Contains the information about the files in the directory.
« File Control Block: contains file’s attributes (file’s owner, size and location of data blocks.
— What kind of in memory data structures used to implement a file system?

* In-memory Partition Table, In-memory Directory Structure, In-memory System-wide Open-file
Table, In-memory Per-process Open-file Table.

— Virtual File System: allows client applications to access different types of concrete file systems in a
uniform way.

— How disk blocks are allocated to files so that disk space is used effectively and files can be accessed
quickly? There are three allocation methods:

« Contiguous Allocation: Meaning, advantages and disadvantages
« Today, we are going to discuss:
— Linked Allocation, Indexed Allocation
— How does the file system manage free blocks?
— How to improve the efficiency, performance, and recovery of the file system?
— If we have time we will start Ch12, mass-storage management.

[N

H
[EEN
FFEfLo L LD HF

Dr. Tarek Helmy, KFUPM-ICS B agaa0%

BSaada3%

Linked Allocation

File blocks are going to be scattered
across the disk (non-contiguously) where
one block points to the next block in the
file.

« Each block contains a pointer to the next
block and the last block contains a NIL (-1)
pointer.

— Files can grow or shrink without
fragmentation and without the need
to know the file size in advance.

— No waste of space except for pointers.

» Pointers take up a great portion of the file
space.
— Perhaps as much as 1% of storage is
now pointers.

« This method does not support random
access into a file block. 24[125} 126[127[]

— Instead, sequential access must be
performed from the first block, 28[J2o[Jso[Jat[]

following pointers. -~

directory

fle start end
jeep 9 25

[N
[)

FrLLo®

12 W
Dr. Tarek Helmy, KFUPM-ICS B g aaEn

BSaada3%

Linked Allocation Advantages and Disadvantages

« Advantages

« This method does not suffer from external fragmentation. This makes it
relatively better in terms of disk space utilization.

* Any free block can be used to satisfy a request.

[N

 There is no need to declare the size of a file when that file is created.
« Afile can continue to grow as long as there are free blocks
« Disadvantages

— Because the file blocks are distributed randomly on the disk, a large
number of seeks are needed to access every block individually. This makes
linked allocation slower (unless FAT is used and cached).

— Alot of space used for pointers of the blocks,

* One way of solving this problem is to cluster the blocks and to use
pointers for clusters not for blocks.

. L

— Does not to support direct-access. -
— lItis not reliable, since the pointers are linked, if a pointer lost or damaged a :
trap will occur. 5

|

13 W

Dr. Tarek Helmy, KFUPM-ICS B g aaEn

BSaada3%

File-Allocation Table (FAT)

Y

Instead of having the pointer to
the next block as a part of the
block itself, why do not we have
a file that contains the pointers
only.

[N

» Each entry in the FAT contains
the block number of the next
block in the file.

» Unused blocks are indicated by
a 0 table entry.

» Example: file consisting of disk
blocks 271, 618 and 339.

» The FAT can be cached or can
be protected or copied to
enhance the reliabllity.

Dr. Tarek Helmy, KFUPM-ICS

directory entry

test | eee | 217 |—

name

start block

—217| 618

339 ¢

618 339 |l |

no. of disk blocks -1

FAT

FrLLog@w

14 W
Baaagaawmh

[N

BSaada3%

Can we get the benefits of both
contiguous and linked allocations.

Allocation of blocks is still scattered
across the disk like linked, but access to
each block is provided by an index
where we can support random access.

Each file has its own index of pointers.

— This allows random access to a
given block without external
fragmentation.

Each file’s index is stored in one block
on disk and pointed to by the directory.

— |f a file can be stored in n block s,
then the file can only consume n+1
blocks, 1 block for the index.

Dr. Tarek Helmy, KFUPM-ICS

Indexed Allocation

P N directory

file index block
jeep 19

24[12526 127[]

28 129 130[131]
\M // L
2
[[[N J
— 9 [L6 |H L[L0 26 .
J
: : : F
A view of the linked list 15

Baaada0En

BSaada3%

[N

Disadvantages of Indexed Allocation

Problems with the indexed allocation method are:
* |f a file can be stored in n blocks, then the file can needs n+1

blocks, 1 block for the index.

» For very small files, say files that expand only 2-3 blocks, the
Indexed allocation would keep one entire block (index block) for
the pointers which is inefficient in terms of memory utilization.

» For files that are very large, single index block may not be able
to hold all the pointers. One proposed solution is to use two or
more index blocks together for holding the pointers. Every index
block would then contain a pointer or the address to the next
index block.

Dr. Tarek Helmy, KFUPM-ICS

FrLLog@w

16 W
Baaagaawmh

BSaada3%

Summary of Allocation Methods

 Contiguous Allocation:
— Efficient because it offers random access to any location in a file

— This method suffers from both internal and external fragmentation. A
block may be too big and therefore a small internal fragment is left. Or
some blocks may not be used and external fragment will be left also.

— When the file is first created, its size must be estimated. Increasing file size
is difficult because it depends on the availability of contiguous memory at a
particular instance.

« Linked Allocation:

— Files can grow or shrink without fragmentation and the need to know the
file size in advance.

— It does not support random access.

— Pointers take up a great portion of the file space.

— Not reliable as pointers may be lost or damaged and causes trap errors.
 Indexed Allocation:

— Allocation of blocks is still scattered across the disk like linked, but access

[N

to each block is provided by an index rather than linked pointers. W

. a

— Each file has its own index of pointers, this allows random access to a .
given block without external fragmentation. r

— If a file can be stored in n block s, then the file can only consume n+1 4
blocks, 1 block for the index regardless the size of the file. . :

Dr. Tarek Helmy, KFUPM-ICS B g aaEn

BSaada3%

[N

Selection of Allocation and Access Methods

« Source code files that need to be compiled should be sequentially
accessed, while data base files should be randomly accessed.

« Media files needs to be contiguously allocated for faster access

(requires only one access to get a disk block, keep the initial address
In memory and increment it).

 For linked allocation, access the i1 th block needs | disk access.

« Some systems use contiguous allocation for small files (up to 4 blocks)
and automatically switch to indexed allocation if the size of the file

roOws.

« The type of access to be made must be declared when the file is

created.

— Afile created for sequential access will be linked and can not be

used for direct access.

— A file created for direct access will be contiguous and can support

both direct and sequential access but its maximum length must be
declared when it is created and the OS provide algorithms to

support both methods.

Dr. Tarek Helmy, KFUPM-ICS

FrLLog@w

18 W
Baaagaawmh

BSaada3%

Free Space Management

« The file system must keep track of the free disk space,
« The operating system maintains a free-space list.

« The free-space list records all free disk blocks, those not allocated to
files or directories.

[N

e The list must be managed so that a new block can easily be
allocated and deleted file's space can be returned to this list.

 To create a file, OS searches the free space list for the required
amount of space and allocates that space to the new file.

« This allocated space is then removed from the free list.
 When the file is deleted, its disk space is added to the free list.

 How does the file system know where a free block of disk space is
located? There are two ways to implement that.

FrLLog@w

19 W
Dr. Tarek Helmy, KFUPM-ICS B g aaEn

BSaada3%

Bit VVector

Using a bit vector to indicate every block in the file system.
* 1 indicates a free block and O indicates a used block.

« Example, a disk of 32 blocks where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13,
17, 18, 25, 26, 27 are free and the rest are allocated. The bit vector
map is:

[N
[]

00111100111111000110000001110000
« To allocate a new block, OS looks for the first 1 and changes it to a O.
* This can be done by looking for the first word of first bit that is not O.

« Block number calculation = (number of bits per word) * (number of O-
value words) + offset of first 1 bit.

 The Macintosh OS uses this technigue for managing the free blocks.

« Unfortunately, bit vectors are inefficient unless the entire vector is kept in
memory, this will consume more memory specially for large disks.
 Bit map requires extra space, example:
— Disk size = 230 bytes (1 gigabyte)
— Block size = 212 bytes = 4 KB
— Bit vector size = 230/212 = 218 pjts (or 23 * 25 * 210 =32 K bytes)

FrLLog@w

20 W
Dr. Tarek Helmy, KFUPM-ICS B g aaEn

BSaada3%

[N

« Copy in memory and disk may differ.

Bit Vector Variations

— The Bit victor map:

* Must be kept on disk and can be cached in memory

 Cannot allow for block [i] to have a situation where bit [i] =
1 in memory and bit [i] = 0 on disk (inconsistency).

— Solution:

« Set bit [i] =0 in disk.
* Allocate block [i]
« Set bit [i] = 0 iIn memory

Dr. Tarek Helmy, KFUPM-ICS

FrLLog@w

21 W
Baaagaawmh

BSaada3%

Linked List

« Another way to manage the free-blocks is to link together all the free
blocks, keeping a pointer to the first free block in a special location
on the disk and caching it in memory.

001111001111131000110000001110000

— The first free block contains a pointer to the next free block and
SO on.

« Allocating one block is simple

[N

« Two variations to avoid the previous problem:

— Grouping: If we have n free blocks, store pointer to the n-1 free
blocks in the first free block, where the last pointer points to
another n blocks, etc...

— Counting: Store a pointer and an integer which denotes how
many contiguous blocks are available.

FrLLog@w

22 W
Dr. Tarek Helmy, KFUPM-ICS B g aaEn

BSaada3%

[N

Linked Free Space List on Disk

free-space list head

16[117
20 _J21[]22

24]25

28[29[130 [31[]

-

* Os keeps a pointer to block 2 as a first free block, block 2

contains a pointer to block 3, block 3 points to block 4, and

SO on...

Dr. Tarek Helmy, KFUPM-ICS

FrLLog@w

23 &
Baaagaawmh

BSaada3%

[N

Efficiency and Performance

« Efficiency depends on:
— Disk allocation and directory algorithms.

— Types of data kept in file’s directory entry.
* Disks are commonly a system bottleneck
— Ways to improve performance include

« Cache disk requests by including a small cache in the device

itself.

« Use all currently unused main memory as a disk spool for disk

caching.

* Include a variety of cache replacement strategies.

* Include a RAM Disk

— Set aside part of RAM to act as a small disk
— Since RAM is volatile, a power outage destroys information.

Dr. Tarek Helmy, KFUPM-ICS

N
N
oL L@

Baaada0En

BSaada3%

[N
[]

Consistency Checking

The caching of certain data structures in memory can speed up the
performance, but what happens in the result of a system crash?

All volatile memory structures are lost, and the information stored on the hard
drive may be left in an inconsistent state.

A Consistency Checker (fsck in UNIX, chkdsk or scandisk in Windows) is
often run at boot time or mount time, particularly if a file system was not closed
down properly. Some of the problems that these tools look for include:

Disk blocks allocated to files and also listed on the free list.
Disk blocks neither allocated to files nor on the free list.
Disk blocks allocated to more than one file.

The number of disk blocks allocated to a file inconsistent with the file's
stated size.

Properly allocated files which do not appear in any directory entry.
Two or more identical file names in the same directory.

lllegally linked directories, e.g. cyclical relationships where those are not a
allowed, or files/directories that are not accessible from the root of the o
directory tree. :
o |

|

25 W

Dr. Tarek Helmy, KFUPM-ICS B g aaEn

BSaada3%

Recovery of Lost Data

In order to recover lost data in the event of a disk crash, it is important to
conduct backups regularly.

* Files should be copied to some removable medium, such CDs, DVDs, or
external removable hard drives.

« A full backup copies every file on a file system.

* Incremental backups copy only files which have changed since some previous
time.

« For example, one strategy might be:
— At the beginning of the month do a full backup.

— At the end of the first and again at the end of the second week, backup all
files which have changed since the beginning of the month.

— At the end of the third week, backup all files that have changed since the
end of the second week.

— Every day of the month not listed above, do an incremental backup of all
files that have changed since the most recent of the weekly backups

[N
[]

L

described above o

* Recover lost file or disk by restoring data from backup. :
» A useful backup strategy is required! J

|

26 W

Dr. Tarek Helmy, KFUPM-ICS B g aaEn

BSaada3%

Recovery

In a system crash, some files may have been opened and
partially altered.

[N

— A consistency checker is often used to determine lost files
and tries to fix them (compares data in directory structure
with data blocks on disk, and tries to fix inconsistencies.

« Use system programs to back up data from disk to another
storage device.

« Recover lost file or disk by restoring data from backup.
— Backup usually stored on external HDs
« A useful backup strategy is required!

FrLLog@w

27 W
Dr. Tarek Helmy, KFUPM-ICS B g aaEn

e B RERSENREE

FoLo Lol sF

The End!!

FrLLow

28 W
Dr. Tarek Helmy, KFUPM-ICS LR L

