
Dr. Tarek Helmy, KFUPM-ICS

Intensive Introduction of Operating Systems

[Chapters 1, 2, and Parts of 3, 13]

Dr. Tarek Helmy El-Basuny

Weeks 1- 3

Operating Systems 431

Dr. Tarek Helmy, KFUPM-ICS 2

Outline

• In the last class:

• We presented the course information and some coordination issues.

• We agreed on the grading polices including the lab component.

• We discussed the topics to be covered during this course.

• We discussed the course objective and learning outcomes.

• From today’s class,

• We will start the intensive introduction of the operating systems.

Dr. Tarek Helmy, KFUPM-ICS 3

During the Intensive OS Introduction

• We will introduce the computer System’s Component,

• We will introduce the basic computer system organization and operation,

• We will introduce different definitions and views of the OS,

• We will introduce the major Operating Systems (OS) types,

• We will introduce the services an OS provides to users, processes, and other systems.

• We will introduce the common OS components,

• We will introduce the storage hierarchy structure in the computer systems,

• We will introduce caching features & problems and how the OS deals with?

• We will introduce the computing models and the OS support,

• We will introduce multiprocessor and multiprocessing systems,

• We will introduce the OS support to multi-processing systems,

• We will introduce real time and embedded OSs,

• We will introduce the interrupts, exceptions and how does the OS handle?

• We will introduce different I/O structures and techniques,

• We will introduce the security and protection issue of system’s resources by the OS,

• We will introduce the system calls, the system programs how does the OS handle?

• We will introduce various ways of structuring an operating system,

• We will introduce how operating systems are installed, customized and how they boot?

Covered by ch. 1, ch. 2

& Parts of ch. 3 &ch.13

in the text book.

Dr. Tarek Helmy, KFUPM-ICS 4

Outline of Today’s Class

• We will discuss:

• Computer-System’s Components & Organization,

• Computer-System Operation,

• Different Definitions of the OSs,

• Benefits of the OS to the users and application programs,

• Different types of the OSs,

• The Major OS Issues,

• Operating System Services,

• Different views of the OS,

Dr. Tarek Helmy, KFUPM-ICS 5

Computer System’s Component

• A computer system consists of

– Hardware modules: Provides basic computing

resources (CPU, memory, I/O devices, etc.).

– Operating system: Controls and coordinates the

use of the hardware resources among various

application programs for various users.

– Applications programs: Define the ways in which

the system resources are used to solve the

computing problems of the users (provide services)

(compilers, database systems, video games,

business programs).

– Users (people, other computers).

Operating System

HW SW

Applications System

OS Non-OS

Dr. Tarek Helmy, KFUPM-ICS 6

Computer System Organization

• A computer system consists of a CPU, a memory and multiple I/O device
controllers that are connected through a common bus.

• Device controllers interface with the I/O devices under the OS control.

– One controller may handle several devices of the same type

– Controllers have local buffers and a set of specific purpose registers.

– The size of the local buffers various from one device to another.

• Each device controller is responsible for moving the data between the
device it controls and its local buffer under the OS control.

• I/O is from the device to local buffer of controller.

• The CPU can access information directly only if it is kept in main memory.

• I/O devices and the CPU can execute concurrently, competing for the
memory access.

• To ensure orderly access to the memory, the OS with memory controller
should synchronize access to the shared memory.

Dr. Tarek Helmy, KFUPM-ICS 7

Computer-System Operation

• After turning on a computer system, its main memory is empty:

how can the execution of programs be started?

• A small part of the OS (BIOS) is built in the board (ROM/EPROM).

• First, the CPU executes the BIOS to validate the system

resources.

• Second, the essential parts of the OS are loaded from the hard

disk to the main memory and then executed.

• Third, the execution of a user’s programs (processes) begin.

• Instructions are executed one after the other as specified in the

running program.

• If an I/O operation is required, the program under execution is

temporarily suspended, and the CPU switches to execute another

service program.

• Interrupts are used to signal important events; they disrupt the

flow of execution temporarily.

• The purpose of an interrupt is to transfer control from the current

task to the OS.

Dr. Tarek Helmy, KFUPM-ICS 8

What is an Operating System?

• There is no a universally accepted definition for the OS.

• It’s a program that mediates between the application programs and the
hardware.

• The OS is a resource manager, where it supports:

– Each program to get time and space with the resource,

• The OS allows application programs run peacefully

– Enforces security policies,

– Enforces safety measures,

– Error detection & recovery,

– Accounting,

– Protection,

You are here

Application Program

Operating System

Computer Hardware

Dr. Tarek Helmy, KFUPM-ICS 9

Operating System Definitions

• The OS controls the execution of user’s programs and operations of I/O

devices.

• The OS provides abstractions to simplify building applications: i.e.

– Files instead of “bytes on a disk”

– Contiguous memory regions (segments/pages) instead of “bits in a RAM
chip”.

• The OS is an extended machine that:

– Presents user with a virtual machine, easier to use.

– Hides the messy details which must be performed.

• An OS can be viewed as an event-driven system that:

– Reacts to events as they occur by the user, I/O recourses, or the

running processes.

• Write your own definition here, …..

Dr. Tarek Helmy, KFUPM-ICS 10

Why do we bother ourselves with OS?

• Software engineer's benefits

– Simplicity of programming the applications.

• Abstractions are reusable across many APIs.

• See high-level abstractions (files) instead of low-level hardware

details (device registers).

• User’s benefits

– Safety

• Program “sees” own virtual machine, thinks its owns computer

• OS protects processes from each other

• OS fairly multiplexes resources across running processes

– Efficiency (cost and speed)

• Share one computer across many users

• Concurrent execution of multiple programs on the same

recourse.

• Improve responsiveness and throughput (the amount of work that

a computer can do in a given time period) due to the

concurrency.

Dr. Tarek Helmy, KFUPM-ICS 11

The Operating System Types

• Single Processor operating systems: Designed to support concurrent

executing of processes on a single processor machine.

• Multiprocessor operating systems: Designed to support large collection of

concurrent executing of processes on multiprocessor machines (Multi-core).

• Single Processing Operating Systems: the OS allows a single process to

run at a time.

• Multi-Processing or Multi-Task Operating Systems: the OSs that allow

the execution of multiple processes at the same time/concurrently.

• Multi-processing can be of two types namely, pre-emptive or co-operative.

– In preemptive multiprocessing, the operating system slices the CPU time

and dedicates one slot to each of the processes. Unix-like operating

systems such as Solaris and Linux support preemptive multiprocessing.

– Cooperative multiprocessing is achieved by relying on each process to

give time to the other processes in a defined manner.

Dr. Tarek Helmy, KFUPM-ICS 12

The Operating System Types

• Server Operating System: it provides runtime support for specialized, high-

performance server applications, e-mail, HTTP, FTP, printer servers.

• Multi-User/Time-Sharing Operating Systems: The operating system allows

multiple users to access a computer system concurrently through the sharing

of time. Unix is an example of multi-user operating systems.

• Single-User Operating Systems: as opposed to a multi-user operating

system, are usable by a single user at a time. Being able to have multiple

accounts on a Windows operating system does not make it a multi-user

system. Rather, only the network administrator is the real user. But for a Unix-

like operating system, it is possible for more than one user to login at a time.

• Single-User, Single-Task: is designed to manage the computer so that one

user can effectively do one thing at a time. The Palm OS for Palm handheld

computers is a good example of a modern single-user, single-task operating

system.

Dr. Tarek Helmy, KFUPM-ICS 13

The Operating System Types

• Single-User, Multi-Tasking: Allows a single user to run several programs at

the same time. Windows and Mac platforms are both examples of that

operating systems.

• Multithreading Operating Systems: that allow different threads of a running

process to run concurrently.

• Smart card/Embedded Operating System: It comes pre-installed on a chip

of the device (i.e. clock, microwave, ..) to provide highly stable functionalities.

(i.e. Java Card OS, Aptura Smart Card OS). It is able to operate on:

– Slow processors

– Limited recourses due to the size

Dr. Tarek Helmy, KFUPM-ICS 14

The Operating System Types

• Real-Time Operating Systems: are those in which the correctness of the

system depends not only on the logical result of computation, but also on

the time at which the results are produced.

• Often used in dedicated applications such as controlling scientific

experiments, medical imaging systems, industrial control systems, and some

display systems. There are two types:

• Hard real-time system

– Guarantees that critical tasks be done on time,

– All delays in the system must be bounded,

– Secondary storage is usually limited or missing, why?

• Data stored in short term memory, or read-only memory (ROM),

• Useful for industrial applications.

• Soft real-time system

– Deadline is important but not critical,

– Limited utility in industrial control or robotics,

– Useful in real-time applications such as multimedia, networking,

advanced scientific projects, etc..

Dr. Tarek Helmy, KFUPM-ICS 15

The Operating System Types

• Cyber Shield Operating System: designed to deliver verifiable security for
conducting confidential online transactions, such as online banking, or
accessing medical records. https://www.youtube.com/watch?v=XuQdk1HQjNo

• It is used to boot the PC with Cyber Shield-OS from a USB or CD, then
conduct one's online banking or other sensitive Internet transactions, then
when finished shut down Cyber Shield-OS and return to one's normal PC
environment.

– Cyber Shield-OS is not intended as a substitute for a general purpose
operating system.

– Cyber Shield-OS is not designed to support the PC's internal Wi-Fi
network adapter. It only allows cable-based internet connection.

– Cyber Shield-OS runs in PC RAM only. It is not designed to install on the
PC's hard drive.

– Cyber Shield-OS does not allow any changes to the original code, any
attempts to install a plug-in will be discarded.

– Cyber Shield-OS includes a built-in firewall that blocks LAN access during
its operation.

– The objective is to isolate the PC running Cyber Shield-OS from other
PC's on the same LAN as the security status of the other PC's may be
unknown.

Dr. Tarek Helmy, KFUPM-ICS 16

Outline of Today’s Class

• We have discussed before:

• Computer-System Components & Organization,

• Computer-System Operation,

• Different definitions of the OSs,

• Benefits of the OS to users and application programs,

• Different types of OSs,

• The Major OS Issues,

• We will discuss today:

• Operating System Services,

• Different views of the OS,

• Main Goals of the OS,

• Why do we need to support Multi-processing and multiprocessors by OS?

• Requirement of Multi-processing by OS.

• Types of Multiprocessor systems.

• Distributed, Network and Clustered systems from the OS point of view.

• Computing Models and the OS support.

• Main Components of the OS.

• CPU and Main Memory Protection by the OS.

• Storage Hierarchy in the computer system and why?

Dr. Tarek Helmy, KFUPM-ICS 17

The Major OS Issues

• As we are going to study the OS, we should think about the followings:

• Structure: How are the OS components organized?

• Sharing: How are resources shared across users/processes?

• Concurrency: How are concurrent processes (computing and I/O) created
and controlled?

• Naming: How are resources named?

• Communication: How do processes exchange information, including across
network?

• Security: How is the integrity of the OS and its resources ensured?

• Accounting: How do we keep track of a resource usage, and perhaps charge
for it?

• Performance: How do we make it all go fast?

• Reliability: What happens if something goes wrong (either with hardware or

with a program)?

• Extensibility: Can we add new features to the OS?

• Scalability: What happens as demands or resources increase?

• Distribution: How do multiple computers interact with each other?

Dr. Tarek Helmy, KFUPM-ICS 18

Operating System Services

• Program execution: the OS allows the system to load a program into memory

(where, when, and how long?) and to execute it.

• I/O operations: Since user programs cannot execute I/O operations directly,

the OS must provide some means to perform I/O.

• File-system manipulation: the OS allows programs to read and write files and

directories, to create and delete them, to search for them, to list file

Information, etc.

• Communications: the OS allows processes executing either on the same

computer or on different systems tied together by a network to exchange

information. Implemented via shared memory or through message passing.

Dr. Tarek Helmy, KFUPM-ICS 19

Operating System Services

• Error detection and recovery: OS needs to be continuously aware of possible

errors.

• Errors may occur in the CPU, memory, I/O devices, or in user’s program.

• For each type of error, OS should take the appropriate action to ensure

correct and consistent computing.

• Debugging facilities can greatly enhance the user’s and programmer’s

abilities to efficiently use the system.

• Resource allocation: Allocating the resources fairly to concurrently running

processes.

• Accounting:

– Keep track of resources utilization, which processes use?

– How much and what kinds of resources for account billing or for

accumulating usage statistics?

• Protection and Security: Ensure that all access to system resources is

controlled and defense of the system against internal and external attacks.

Dr. Tarek Helmy, KFUPM-ICS 20

There are 5 Views of the OS

Your view of an OS depends on who you are and your

interest:

• The hardware engineer view

• The operating system designer’s view

• The application programmer’s (Software Engineer) view

• The end-user’s view

• The system administrator’s view

Dr. Tarek Helmy, KFUPM-ICS 21

The Hardware Engineer View

• The HW engineer interest revolves around:

• How to make the booting process more faster by writing efficient

Bootstrap program.

• A bootstrap program is the first code that is executed when

the computer system is started .

• Typically stored in ROM or EPROM, generally known as

Firmware/BIOS.

• Initializes all aspects of system.

• Loads operating system kernel and starts execution of

processes.

• How does the OS verify the devices and efficiently use them.

• How to make the interactions between the HW and the OS more

efficient.

Dr. Tarek Helmy, KFUPM-ICS 22

The OS Designer’s View

• The OS designer’s interest revolves mainly about the OS itself, its

internal structure, efficiency, performance, etc..

• How can we make the OS more friendly?

• How can we add more functionality to upgrade the OS?

• How do we debug the Os to make it more reliable, scalable, etc..

Dr. Tarek Helmy, KFUPM-ICS 23

The Application Programmer’s View

Since the OS is like a library with a well defined set of API’s. The application

programmer’s interest revolves mainly around:

• What abstractions are available from the OS?

• How well is the API structured?

– Not too low-level, or high-level.

• How portable is the interface?

– Don’t want to keep rewriting the same program for each new OS

release.

Dr. Tarek Helmy, KFUPM-ICS 24

The End-User’s View

The end user’s interest revolves mainly around:

• End users care about their applications, not the OS.

• The OS should be transparent and friendly.

• The OS must not crash easily.

• The OS must protect their applications and privacy.

Dr. Tarek Helmy, KFUPM-ICS 25

The System Administrator View

• Since, the OS is a program that allows the efficient and fair usage of

resources. The system administrator’s interest revolves mainly

around:

• How easy is it to install a new software on that OS?

• How does OS track usage of resources for accounting?

• How does OS support the security aspects?

• How does OS support the fairness among running processes and

users?

Dr. Tarek Helmy, KFUPM-ICS 26

Main Goals of the OS

1. Maximize Resources Utilization: CPU cycles, Memory, Disk, etc. must

be managed efficiently to maximize overall system performance.

2. Resource Abstraction: OS transforms the devices into more abstract and

easily used devices. In this way, it is building an extended machine.

3. Fairness: the OS fairly multiplexes resources across programs.

4. Maximize the throughput: The amount of work that a computer can do in

a given time period.

5. Virtualization: The operating system creates virtual copies of the

processor and the memory . Supports different OS to communicate and

exchange information. Gives each user the appearance of an unshared

resource.

Operating System

Dr. Tarek Helmy, KFUPM-ICS 27

Advantages & Disadvantages of Virtualization

Advantage:

• The virtual-machine concept provides complete protection of system

resources since each virtual machine is isolated from all other virtual

machines.

• Allows you to install different platforms on the same machine.

Disadvantage:

• The isolation, however, permits no direct sharing of resources.

• That means the resources utilization will be low and throughput will

be low as well.

• The virtual machine concept is difficult to implement due to the effort

required to provide an exact duplicate to the underlying machine.

Dr. Tarek Helmy, KFUPM-ICS 28

Supporting of Multi-processing by OS: why?

• Multiprocessing means allowing more than one active process to be executed

simultaneously through the interleaving between I/O and CPU bound instructions:

– An I/O-bound process will have many short CPU bursts.

– A CPU-bound process will have many long CPU bursts.

• Why: to maximize the throughput and increase system’s resources utilization.

• Since I/O bound Instructions are very slow in execution compared to CPU bound instructions,

for example:

– If there is a CPU with a speed of 400 MHz (400 million cycles/second)

– If each CPU-bound instruction takes 10 cycles/instruction

– That means the CPU can execute about 40 million CPU-bound instructions/second

– Or the CPU can do (40 x 106) / 103= 40,000 CPU-bound instructions/millisecond.

– If one I/O-bound instruction like (Reading 1 disk block) takes 20 ms

– In a time to read one disk block, CPU can do 20 * 40,000 = 800,000 CPU-bound

instructions !!. The result:

• Poor CPU utilization when only one process is executing at a time

• Low throughput.

• Low utilization of the system resources in general

Dr. Tarek Helmy, KFUPM-ICS 29

Multiprocessing OS

• If several processes can execute concurrently, then the CPU can

switch to another one whenever one is waiting for the I/O to

complete and that maximizes the CPU utilization which will increase

the throughput and resources utilization as well.

Dr. Tarek Helmy, KFUPM-ICS 30

Requirements for Multi-processing OS

• Multiprocessing OS runs multiple processes at once by interleaving I/O-bound

and CPU-Bound instructions of the running processes.

– But that needs asynchronous I/O devices [once the I/O starts, the control

returns to the OS without waiting for I/O completion] and also needs to know

when the I/O devices are done:

– Interrupts, or Polling or DMA

• It needs HW support for memory management.

 Keeping track of memory usage,

 Process swapping,

 Dynamic memory allocation,

– Base and Limit registers to protect processes from each other.

• It needs SW support to manage resources conflict, i.e.

• CPU scheduling (which process is to be run next),

• Deadlock handling,

• Memory allocation,

• Management of I/O resources,

• The goal is to maximize the system’s throughput and to increase system’s

resources utilization.

– Perhaps at the cost of response time.

Dr. Tarek Helmy, KFUPM-ICS 31

Multiprocessing Modes by the OS

• CPU is shared among a number of processes based on a certain policy (i.e.

SJF, FCFS, ..) while one process is waiting for the I/O, another one can use

the CPU.

• CPU is shared among processes based on a pre-defined time interval.

• Instead of waiting until the process gives up voluntarily the CPU in multi-

processing environment, take it away at regular intervals (time-slices).

• Divide CPU’s time equally or non equally among the processes. If a

process is truly interactive (e.g. editor), then it can be given more time.

• Advantages of both strategies:

– CPU is kept busy and recourses utilization is maximized .

• Disadvantages of both strategies:

– Hardware and OS became significantly more complex for handling CPU

scheduling, handling deadlock, protection, memory management, virtual

memory, etc.

Dr. Tarek Helmy, KFUPM-ICS 32

Supporting of Multiprocessor Systems by the OS, Why?

• Three main advantages of supporting Multiprocessor system by the OS:

– Increased throughput (more CPUs = more work in less time),

– Economy of scale (saves money, CPUs share I/O resources),

– Increased reliability (provides redundancy and fault tolerance),

• Types of Multiprocessor systems:

• Tightly coupled system (Multi-core system, more than one CPU in close communication).

– Processors connected at the bus level and share both memory and clock,

– Communication usually takes place through the shared memory,

• Loosely coupled system

– Processors do not share memory and clock (Networked machines)

– Processors interconnected via a high speed communication system,

– Communication usually takes place through communicating messages,

Dr. Tarek Helmy, KFUPM-ICS 33

Types of Multiprocessor Systems

• Symmetric Multi-Processing (SMP)

– Each processor runs the same copy of the operating system

• All processors are peers

– It dynamically partitions tasks across the processors, manages the ordering of
task completion, and controls the sharing of all resources among the cores.

– Many processes can run simultaneously without performance deterioration

• Data sharing should be carefully coordinated for efficiency

– Most modern OSs (Windows, Unix, Linux) support SMP.

• Asymmetric Multi-Processing (AMP)

– Master processor runs the OS, schedules and allocates work to slave

processors.

– Each slave is assigned a specific task by the master processor.

– More common in extremely large systems (Distributed or Clustered systems).

Symmetric Multiprocessing Architecture A Dual-Core Design

Dr. Tarek Helmy, KFUPM-ICS 34

Multiprocessor Systems: Distributed Systems

…

Network

disk

disk
Processors

disk

disk
Processors

disk

disk
Processors

disk

disk
Processors

node 1

node N node 3

node 2

• A distributed system is: A collection of independent computers that

geographically distributed and appear to its users as a single coherent system.

• Runs on a cluster of machines with no shared memory.

• Distributed OS:

– A network of computers run a shared OS.

– It provides the user with transparent access to the resources (including the

hot resources, i.e. CPU, mail Memory) of multiple machines.

– Gives the impression, there is a single operating system controlling the

network.

– Distributed OS is a kind of Cooperating OSs (each OS has its own tasks

but helping each other to achieve their tasks by sharing their hot resources)

Dr. Tarek Helmy, KFUPM-ICS 35

Distributed Systems

• Advantages of distributed systems:

– Resource sharing

• Sharing and printing files at remote sites

• Processing information in a distributed database

– Computation speedup: Load sharing

– Reliability: Detect and recover from site failure, function transfer,
reintegrate failed site.

– Distributed OS Supports communications between jobs:

• Inter-Process Communication (IPC)

• Message passing, shared memory

• Requires

– A single global IPC mechanism,

– A global protection mechanism,

– Identical process management and system calls at all nodes,

– Common file system at all nodes.

Dr. Tarek Helmy, KFUPM-ICS 36

Multiprocessor Systems: Distributed vs. Network Systems

 The user is not aware of the

multiple CPUs.

 Each machine runs a part of the

DOS.

 Gives the impression there is a

single OS controlling the network.

 Network is mostly transparent –

it’s a powerful virtual machine.

 Applications interact with single

service layer.

 The user is aware of the existence

of multiple CPUs.

 Each machine has its own private

Operating System and runs

independently from other

computers on the network.

 Applications need to know about

location of different services.

 Provides mainly file sharing.

Dr. Tarek Helmy, KFUPM-ICS 37

Multiprocessor Systems: Clustered Systems

• A computer’s cluster is a group of

networked/distributed computers working

together closely to achieve a computational

task.

• Clustered OS is a kind of Collaborating OSs

(all OSs cooperate to achieve the same task

by sharing their hot resources)

• Clustered systems share storage and closely

linked through a local area network (LAN).

• Clustered systems support high availability,

each node can monitor one or more nodes in

the LAN.

Dr. Tarek Helmy, KFUPM-ICS 38

Clustered Systems

• Possible clustering schemes:

– Symmetric mode (two or more nodes running applications and monitoring

each other).

– Asymmetric clustering (one is in hot standby mode while another is

running applications; switches to backup if the active one fails).

• Cluster systems categories:

– High-Availability clusters are implemented primarily for the purpose of improving

the availability of services that the cluster provides. They operate by having

redundant nodes, which are then used to provide service when system

components fail.

– Load-Balancing clusters is when multiple computers are linked together to share

computational workload or function as a single virtual computer. Logically, from the

user side, they are multiple machines, but function as a single virtual machine.

– Computing/Grid clusters are used primarily for computational purposes, rather

than handling IO-oriented operations such as web service or databases.

Dr. Tarek Helmy, KFUPM-ICS

Computing Models Shift

39

• The main objective here is to discuss how the operating support of each

computing model will be different.

Dr. Tarek Helmy, KFUPM-ICS 40

Client-Server Computing Model

• In the Client-Server model: The client

sends a request to a server, and the server

responds with the information requested.

– Popular models, e.g. Telnet, FTP, etc.

• Client-Server Computing

– Client terminals are PCs

– Servers, responding to requests sent

by clients

• Server computer provides an

interface to the clients to request

services (i.e. database).

• File-server provides interface for

clients to store and retrieve files.

client
server

Server

Client

Client

invocation

result

Server
invocation

result

Process:
Key:

Computer:

Dr. Tarek Helmy, KFUPM-ICS 41

Client-Server Computing Model

• Advantages:

– Centralization - access, resources, and data security are

controlled through the server.

– Scalability - any SW can be upgraded when needed.

– Flexibility - new technology can be easily integrated into the

system.

– Interoperability - all components (clients, network, servers) work

together.

– Accessibility - server can be accessed remotely and across

multiple platforms.

– Lower total costs

• Disadvantages:

– As the number of simultaneous client requests to a given server

increases, the server can become overloaded.

– The client–server paradigm lacks the robustness, if the server

fails, clients’ requests cannot be fulfilled.

Dr. Tarek Helmy, KFUPM-ICS 42

Peer-to-Peer Computing Model

• P2P is a model of distributed system:

– All nodes are considered peers (identical

and there is no distinguish between clients

and servers)

– May each act as client, server or both.

– Peers make a portion of their resources,

such as CPU time, Memory space, disk

storage etc., directly available to other

Peers without the need for central

coordination by servers.

– A node joins a P2P network must:

• Registers its service with central lookup

service on the network, or

• Broadcasts a request for a needed

service and responds to requests for

service via discovery protocol.

– Examples include Napster and Gnutella as

file sharing systems.

peer

peer

peer

peer

peer

peer

peer

peer

peer

Dr. Tarek Helmy, KFUPM-ICS 43

Advantages & Disadvantages of P2P Computing Model

• Advantages

– No central point of failure

• All peers in P2P network are the same.

• Data and computation is decentralized/not centralized.

• Peers are autonomous, they have full control.

– Scalability

• Since every peer is alike, it is possible to add more peers to the

system and scale it to larger networks.

• Disadvantages

– Decentralized coordination

• How to keep the global state consistent?

• Require distributed coherency protocols.

– All node’s load may not be equal, Load unbalance.

• Computing power, bandwidth have an impact on overall

performance.

Dr. Tarek Helmy, KFUPM-ICS 44

Web/Cloud Computing Model

• Web has become everywhere and available all the time (Ubiquity)

• Computing-intensive applications need more computing and better performance.

• Cloud computing is an Internet-based computing, where shared resources, software

and information are provided to computers and other devices on-demand, like the

electricity grid.

• Cloud computing is a model for enabling convenient, on-demand network access to

a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly released with minimal management

effort.

• Cloud computing is a way of managing large numbers of highly virtualized

resources such that, from a management perspective, they resemble a single large

resource. This can then be used to deliver services with flexible scaling.

• Cloud Providers – Amazon, Google, e.g. Google owns more than 20,000 servers/data

center.

Dr. Tarek Helmy, KFUPM-ICS

• So we will just buy everything from the cloud.

45

Cloud Computing Frameworks

Dr. Tarek Helmy, KFUPM-ICS 46

Common OS Components

• Process Management Component (PMC)

• Memory Management Component (MMMC)

• File Management Component (FMC)

• Mass Storage Management Component (MSMC)

• I/O Management Component (IOMC)

• Protection and Security Component (PSC)

• Command-Interpreter Component (CIC) (GUI’s shell in

Windows OS and CLI’s shell in Unix/Linux OSs).

Dr. Tarek Helmy, KFUPM-ICS 47

Process Management Component (PMC)

• A process is a program in execution phase.

• A process needs certain resources (i.e. CPU time, Memory Space, Files
access, and I/O devices) to complete its task.

• The OS (PMC) provides the following operations to support processes:

– Creating a process,

– Deleting/killing a process,

– Suspending a process,

– Resuming a suspended process,

– Cloning a process,

– Supporting Inter-process communication,

– Creating/killing, …etc. of a child process (sub-process)

• In most systems, processes form a tree, with the root (parent) being the first
process to be created.

• An example of a process tree:

– A created two children processes, B and C

• B created three children processes, D, E, and F

• We will get into the details of the process management in Ch. 3 soon.

Dr. Tarek Helmy, KFUPM-ICS 48

Main-Memory Management Component (MMMC)

• The operating system (MMMC) is responsible for the following activities in

connections with memory management:

– The MMMC keeps track of which parts of the main memory are currently

used and which parts are free.

– The MMMC decides which processes to load when memory space

becomes available.

• A policy is needed

– The MMMC decides how many block of memory to allocate to each

process.

• A policy is needed

– The MMMC maintains the mappings of processes from physical to virtual

memory and vise versa.

• Through page tables

– The MMMC decides when to remove/eject out a process from memory if

memory space it required by a VIP process.

• A policy is needed

• We will get into the details of the main memory management in Ch. 8 soon.

Dr. Tarek Helmy, KFUPM-ICS 49

• File Management

– A file in windows OS is a collection of related information defined by its

creator. Files represent programs (both data, source, object and

executable forms).

– In Unix/Linux files are either ordinary files (doc., exe., pdf., media, etc.),

directory files (folders) or devise file (printers, CD, ..)

– The FMC is responsible for the following activities in connections with the

file management:

• File creation and deletion.

• Directory creation and deletion.

• Support of primitives for manipulating files and directories.

• Mapping files onto secondary storage.

• File backup on stable (nonvolatile) storage media.

• We will get into the details of the file management in CHs. 10 &11 soon.

File Management Component (FMC)

Dr. Tarek Helmy, KFUPM-ICS 50

I/O Management Component (IOMC)

• The IOMC is responsible for the following
activities in connections with I/O management:

• Controls the processes access to I/O
resources via drivers.

• Allows sharing and synchronizing of the I/O
resource.

• Provides a standard interface between
process (user's one or system’s one) and I/O
devices.

– File system (disk), sockets (network).

• Provides buffers for caching services.

• Manages the device’s driver code for specific

I/O devices.

• We will present the details of I/O management in the intensive introduction & you need to

read Ch.13.

Dr. Tarek Helmy, KFUPM-ICS 51

Mass-Storage Management Component (MSMC)

• Since main memory (primary storage) is volatile and not enough to

accommodate all data of concurrently running processes.

• So, the computer system uses a mass-storage memory to extend

(create VM) and to back up the main memory content.

• The OS uses (VM) as the principle on-line storage medium, for both

processes and data.

• We will present the details of Virtual Memory Management in Ch.9.

• The MSMC is responsible for the following activities in connection with

disk management:

– Manages the free space available on the secondary-storage device.

– Allocates of storage space when new files have to be written.

– Schedules the read and write requests for mass-storage access.

• We will present the details of Mass-Storage Management in Ch.12.

Dr. Tarek Helmy, KFUPM-ICS 52

Command-Interpreter Component (CIC)

• Many commands are given to the OS either from keyboard (command-line

interface, CLI), or script files (i.e. Unix/Linux), or from GUIs through the mouse (i.e.

in Windows or Mac).

• These commands may deal with:

– Process creation and management

– I/O handling

– Mass-storage management

– Main-Memory management

– Editing and File-system access

– Networking (FTP, Telnet, etc.)

• The OS’s module that reads, interprets and dispatches these commands is called

variously:

– Shell (any program that users use to interact with the OS)

– Control-Card Interpreter

– Command-Line Interpreter

• Its function is to get the command, interprets and dispatches it to the corresponding

module in the OS to execute it.

• We will not present a specific one but you need to practice them on different OSs by

yourself in the Lab part .

Dr. Tarek Helmy, KFUPM-ICS 53

Protection & Security Component (PSC)

• Since the OS supports multi-users with concurrent execution of multi-

processes, then these processes or users must be protected from one

another‘s.

– Protection refers to mechanisms for controlling the access of processes,

or users to the resources defined by a computer system (internal).

– Security refers to defense of the system against external attacks.

• The PSC is responsible of:

– Protecting processes' assigned resources (files, memory, etc.) from being

accessed by other processes

– Detecting any trial for intrusion

– Graceful recovery from errors detected by the hardware

• e.g. illegal instructions, divide-by-zero…

– Preventing malicious destruction or resources.

– Protects all system resources, i.e.

• CPU, see in the next slide how does the OS protect the CPU.

• Memory, see in the next slide how does the OS protect the memory.

• …..

• We will present the details of Protection & Security aspects in CHs.14&15.

Dr. Tarek Helmy, KFUPM-ICS 54

Example: CPU Protection

• Since the CPU is one of the hot resources, the OS needs to prevent

processes from hogging the CPU for a long time. i.e.

– Infinite loops

– Waiting for non-exist resources

• OS uses a timer to control process execution so that when the timer

expires, the control switches back to the OS.

– Context switch

• This is the idea of CPU time-slicing

– Each process runs for a few msec.

CPU

…, jmp, loadc, add,…

…, sub, cmp, breq, jmp,…

…, store, mov, add, cmp,… P3

P2

P1

P1 is running

Dr. Tarek Helmy, KFUPM-ICS 55

Example: Memory Protection

• The OS needs to ensure that no process can interfere

with any other processes, i.e.

– Could overwrite other processes in memory

– Needs to protect the OS memory in particular

• Must provide memory protection at least for the

interrupt vector and the interrupt service routines.

• The OS uses two registers to determine the range of

legal addresses of each process.

– Base register: Holds the smallest legal physical

memory address for the process.

– Limit register: Contains the size of the process.

Dr. Tarek Helmy, KFUPM-ICS 56

Base & Limit Registers to protect a process

CPU

Base+Limit M
e
m

o
ry

<

Base

>=
Address

(user mode)

Trap to OS
(Addressing error)

Yes Yes
No No

Address (supervisor mode)

Dr. Tarek Helmy, KFUPM-ICS 57

Storage Hierarchy in the Computer System

• In any computer system, the storage systems
are organized in hierarchy based on:

– Speed

– Cost

– Volatility

– Size

• CPU registers (index registers, ACC, etc.)
provides a high speed cache for CPU.

• Cache memory: Copying temporary
information into faster storage devices with
access time close to the CPU time.

• Main memory: Only the storage media that
the CPU can access directly.

• Main memory can be viewed as a last cache
for secondary storage.

• Secondary storage: Extension of main
memory that provides large nonvolatile
storage capacity.

Memory

F
a
s
t
E

x
p
e
n
s
iv

e

S
lo

w
 C

h
e

a
p

Volatile

Non

Volatile

Dr. Tarek Helmy, KFUPM-ICS 58

Caching and Consistency

• Caching

– Use of high-speed memory to hold recently-accessed data.

– Requires a cache management policy (cache size, replacement policy).

– Data that resides on the disk are copied into the main memory, then into the

cache and then into the CPU registers for modification such as a variable

incrementing A.

– Caching introduces another level in storage hierarchy. This requires data that

is simultaneously stored in more than one level to be consistent.

– Consistency Problem: due to replication of data, this may lead to one copy

being different from the others. The OS must insure that all copies of the data

will be the same.

– This is not a big problem, in computing environment where only one process

executes at a time. The modification done on the CPU registers can be copied

back to the disk for a consistency purpose.

– In multiprocessing environment, extreme care must be taken by the OS so

that if several processes want to access A, then each should get the latest

value of A.

Dr. Tarek Helmy, KFUPM-ICS 59

Caching and Coherency

• Coherency: The OS needs to synchronize the data access in

multiple caches such that reading a memory location via any cache

will return the most recent data written to that location.

• To ensure that each cache has a copy of the newest version when it

needs it.

• OS must ensure that an update of A’s value will be immediately

reflected in all other caches where A resides.

• Consistency leads to coherency but not the other way.

Dr. Tarek Helmy, KFUPM-ICS 60

The Problem of Cache Consistency

CPU

Cache

100

200

A’

B’

Memory

100

200

A

B

I/O

consistent is there where

Cache and memory are

the same. A’ = A, B’ = B.

CPU

Cache

550

200

A’

B’

Memory

100

200

A

B

I/O: Output of A gives 100

Inconsistent where

Cache and memory are

not the same. A’ != A.

CPU

Cache

100

200

A’

B’

Memory

100

440

A

B

I/O: Input 440 to B

Inconsistent where

Cache and memory are

not the same. B’ != B.

Dr. Tarek Helmy, KFUPM-ICS 61

Dual-Mode Operation

• Two modes of operation are there in any operating system.

– User mode: the control of execution will be done by a user’ s program.

– Monitor mode (supervisor, or kernel mode): the control of execution will be
done by the OS.

• A Mode bit (a hardware bit) is used to indicate the current mode: monitor’s
mode where the mode bit is reset=0 and user’s mode where mode bit=1.

• When an interrupt or a trap occurs, the control switches to monitor mode.

• All I/O instructions (privileged instructions) can be executed only in monitor
mode.

• The OS must ensure that a user program could never gain control of the
system in monitor mode.

Monitor

Mode

User

Mode

In case of Interrupt/ Exception

After serving the

Interrupt or Exception

Dr. Tarek Helmy, KFUPM-ICS 62

Privileged Instructions

• Since user’s program may issue illegal I/O

instructions: i.e.

– Write to a non-existence device

– Read more data than a disk holds

• Some instructions are restricted to be

executed under the OS control, in monitor or

supervisor mode.

– They are known as privileged instructions

• User programs can only perform I/O by

requesting it through the OS.

• OS retains control over user’s programs to:

– Directly access I/O devices (disks,

network cards, etc.)

– Manipulate memory state management

• Page table pointers

– Manipulate special ‘mode bits’

• Interrupt priority level

– Halt instruction

Dr. Tarek Helmy, KFUPM-ICS 63

Interrupts and Exceptions

• Modern OSs are interrupts or exceptions driven programs.

• Two main types of events: Interrupts and Traps/Exceptions:

– Interrupts are used to handle events external to the processor, caused

by hardware devices and are not visible to the user’s programs, e.g.:

• A device finishes I/O operation (keyboards, mouse, etc.)

• Timer fires

– Exceptions or traps are used to handle events internal to the processor

(detected by the processor while executing the process), means caused

by software and it is visible to the user’s programs, e.g.:

• An exception e.g., “div. by zero”

• A page fault, “write to a read-only page”

• Asking to make arithmetic operation on non-numbers.

• The Interrupts transfer the control to the interrupt service routine, through the

interrupt vectors which contain the addresses of all the service routines.

Interrupt Processor

Processor

Exception

Dr. Tarek Helmy, KFUPM-ICS 64

Reasons of Interrupts/Exception

• Reasons for interrupts (or exceptions/traps) are:

– Control of asynchronous I/O devices

– Context switch between processes based on a CPU scheduling policy

– Exceptional conditions (e.g., illegal instruction) occurred during execution.

– System call: a user’s process requests for OS services.

– etc..

• The OS must save the address of the interrupted instruction.

• Incoming interrupts are disabled while another interrupt is being

processed to prevent a lost of interrupt.

Dr. Tarek Helmy, KFUPM-ICS 65

Interrupt Handling

• Serving an interrupt is known as “Interrupt Handling”.

• Different types of interrupts are handled by different interrupt service

routines.

• The OS maintains a table, known as Interrupt Vector, that contains the

starting addresses of the service routines.

• An integer is associated with each type of interrupt. When an interrupt

occurs, the corresponding integer is supplied to the OS usually by the

hardware (in a register).

• The OS determines which service routine to be executed by mapping the

Interrupt Vector.

• The OS preserves the state of the executing process by storing

– CPU Registers (PC, Process Status Word, SP, Data Registers)

– Additional information about the current process and its state

• Execute the interrupt service routine.

• Upload the status of the process and resume its execution.

Dr. Tarek Helmy, KFUPM-ICS 66

On Interrupts

• The hardware device calls the OS at a pre-

specified location/register,

• The OS saves the state of the current

process, (contents of, registers: PC, SP,

general-purpose registers)

• The OS identifies the device and the cause

of interrupt,

• Responds to the interrupt by executing the

service routine,

• Execute a return from interrupt (RTI) to

return to the interrupted process,

• OS restores the state of the interrupted

process,

• Key Fact: None of these actions are visible

to the user program.

Int. A?

Int. C?

Int. Z?

Service

Routine for Z

Service

Routine for C

Service

Routine for A

Address of Int. A

Address of Int. C

Address of Int. Z

Dr. Tarek Helmy, KFUPM-ICS 67

On Exceptions/Traps

• The running processes calls the OS at a pre-specified location,

• The OS identifies the cause of the exception (e.g. divide by 0),

• If the user’s process has an exception handling routine, then the OS

adjusts the user’s process state so that it calls its handler routine,

– If the user’s process does not have a specified handler, then the OS

suspends it and runs other available service routines.

• Execute a RTI instruction to return to the user’s process.

• Key Fact: Effects of exceptions are visible to user’s processes and causes

abnormal execution flow.

Dr. Tarek Helmy, KFUPM-ICS 68

• We have presented till now:

• Definitions of the OSs, Benefits of the OS to users and application programs,

• Computer-System Organization and Operation, Different types of OSs, the Major OS Issues,

Operating System Services, Different views of the OS,

• Main Goals of OS, Supporting of Multi-processing by OS: why?

• Requirements of Multi-processing (HW and SW support), Multiprocessor Systems (Tightly and

loosely coupled, symmetric and asymmetric mode of coupling),

• Distributed vs. Network OSs, Clustered systems, and why do we support clustering?

• Computing models: Client-server, P2P, Grid-computing, Cloud-Computing,

• Fundamental components of the OS; i.e. Process Management, Memory Management, File

Management, I/O Management, Mass-Storage Management, Command-Interpreter,

• Protection & Security components of the OS, (CPU and Memory Protection as hot resources).

• Storage Hierarchy, Consistency and Coherency Definitions and Support by the OS.

• Dual-Mode Operation of the OS, Privileged Instructions,

• Interrupts and Exceptions Definitions.

• Reasons of Interrupts/Exception, Interrupts and Exceptions Handling.

• We are going to present Today:

• I/O Handling Methods (Synchronous/blocking and Asynchronous/non-blocking)

• I/O Data Transfer Techniques (Polling, Interrupt, Direct Memory Access)

• System Calls, System Programs, and how to handle a system call?,

• Passing System Call Parameters to the OS, and Processes Communication Methods,

• Operating system Design Issues, Operating system Design goals,

• Different ways of structuring the operating systems, Operating System Implementation, System

Generation (SYSGEN). Process Management (Ch. 3)

Outline of OS Intensive Introduction Classes

Dr. Tarek Helmy, KFUPM-ICS 69

I/O Handling Methods/Modes: Ch 13

• Synchronous/blocking: blocking the progress of a process while the I/O operation

is in progress, leaving system resources idle. This means that the CPU can spend

almost all of its time idle waiting for I/O operations to complete. How this is

done?

– Request is made to the I/O device,

– The CPU waits for the I/O device,

• Wait instruction idles (Looping) the CPU until the request is completed.

– At most, one I/O request is running at a time, no simultaneous I/O processing,

• Asynchronous/non-blocking: after requesting for an I/O operation, the control

returns to user’s process without waiting for the I/O request to be completed,

– Request is made to the I/O device,

– CPU records the request,

• Device-status table: contains entry for each I/O device indicating its type,

address, and state,

– The CPU continues the process execution, it can be a different one

– After completing of the I/O operation, the device interrupts the OS,

– The processor records that the request is done,

– It can resume the process execution.

Dr. Tarek Helmy, KFUPM-ICS 70

I/O Handling Methods: Ch 13

Synchronous Asynchronous

These structures are

necessary to keep

track of IO in

progress.

Device-Status Table

Dr. Tarek Helmy, KFUPM-ICS 71

I/O Data Transfer Techniques: Ch 13

• There are several ways of managing data transfer between I/O devices and

the Main Memory.

• Programmed I/O (Polling)

– Processor does all the work.

– CPU checks by polling, reads and writes into device buffers.

• Interrupt Driven I/O

– CPU asks devices to let it know when they are ready to transfer data.

– Device notifies CPU when I/O operation complete.

• Direct Memory Access (DMA, a memory controller)

– DMA is programmed by the OS to exchange data at high rate between

main memory and the I/O device.

– CPU asks DMA to perform the I/O directly to or from memory.

– DMA controller performs “I/O”, not CPU.

– CPU notified with DMA complete.

• The OS is responsible for choosing & managing the right technique for each

specific I/O in order to deliver the best overall performance.

Dr. Tarek Helmy, KFUPM-ICS 72

Programmed I/O: Polling

Programmed I/O (Polling): CPU Polls I/O Device’s Status

Registers

• CPU regularly checks or polls in turn each I/O

channel or port to determine if it has information for

input or is ready to accept data for output.

• I/O modules share the bus with the CPU.

• CPU has direct control over the I/O

– Sensing the status through flag register

– Read/write commands

– Transferring data

• Polling is time consuming:

• CPU must swap between executing processes and
polls of each port.

• Wastes CPU time: Programmed I/O asks for too much
attention of the CPU if the device is fast.

• If the device is slow the CPU might have to wait a long
time (most devices are slow compared to modern
CPUs).

• The CPU is also involved as a middleman for the
actual data transfer.

CPU sends read

request to device

CPU waits

for device

CPU reads data

from device

CPU writes data

to main memory

Done?

Ready

Not ready

No

Yes

Dr. Tarek Helmy, KFUPM-ICS

Interrupt-Driven I/O

• The CPU sets up I/O operation and

continues its work,

• The device performs the I/O (long

time),

• If the device completes, it interrupts the

CPU,

• Then the CPU responds to the interrupt

and transfers the data,

• Continue once I/O is complete,

• Interrupts save overhead of polling the

I/O resources by the CPU.

73

CPU sends read

request to device

CPU reads data

from device

CPU writes data

to main memory

Done?

CPU receives interrupt

No

Yes

CPU does other stuff

. . .

Dr. Tarek Helmy, KFUPM-ICS 74

Direct Memory Access

• Fast I/O devices (graphics cards, network cards and sound cards,

etc.) use Direct Memory Access (DMA), why?

• DMA permits the I/O device to transfer data directly to or from

main memory without having each byte handled by the CPU.

– DMA controller moves data between device and memory then

sends interrupt to CPU only when transfer is complete.

1. CPU only initiates operation

2. DMA controller transfers data directly to/from main memory

3. Interrupt when transfer completed

• DMA enables more efficient use of interrupts, increases data

throughput, and potentially reduces hardware costs by eliminating

the need for specific FIFO buffers for every resource.

CPU sends read

request to DMA

unit

CPU receives DMA

interrupt

CPU does other stuff

. . .

Dr. Tarek Helmy, KFUPM-ICS 75

Three Techniques for I/O

Dr. Tarek Helmy, KFUPM-ICS 76

System Calls

• System calls allow user’s processes to request some services from the operating

system which the process itself is not allowed to do.

• A System call: Provides a "direct access" to OS services (e.g., file system, I/O

routines, memory allocate & free routines) by user’s processes.

• System calls in fact, are treated as a special case of interrupts.

• System calls execute instructions that control the resources of the computer system,

e.g., I/O instructions for devices.

• Programs that make system calls called "system programs“.

• System programs were traditionally coded in assembly language but currently written

by C, C++, and Java Programming languages.

• Mostly accessed by programs via a high-level Application Program Interface (API)

rather than direct system call use.

• Three most common APIs are Win32 API for Windows, POSIX API for POSIX-based

systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API

for the Java virtual machine (JVM).

Dr. Tarek Helmy, KFUPM-ICS 77

System Programs

• The system programs are a set of utility programs help the process to issue a system

call requesting services, such as:

• File management - Create, delete, copy, rename, print, dump, list, and generally

manipulate files and directories.

– Status information

• Asks the system for info. i.e. date, time, amount of available memory, disk

space, number of users

– Others provide detailed performance, logging, and debugging information

– File modification

• Text editors to create and modify files

• Special commands to search contents of files

• Programming-language support - Compilers, assemblers, debuggers and interpreters.

• Program loading and execution- Absolute loaders, linkage editors, and overlay-loaders,

debugging systems for higher-level and machine language

• Communications - Provide the mechanism for creating virtual connections among

processes, users, and computer systems (http, ftp, telnet, …)

– Allow users to send messages to one another’s screens, browse web pages, send

electronic-mail messages, log in remotely, transfer files from one machine to

another

Dr. Tarek Helmy, KFUPM-ICS

Types of System Calls: Windows & Unix

78

Dr. Tarek Helmy, KFUPM-ICS 79

Example of System Calls

• System calls sequence to copy the contents of one file to another file.

Dr. Tarek Helmy, KFUPM-ICS 80

Handling a System Call

– User’s process makes a system call by executing a

system call privileged instruction.

 Hardware resets the mode-bit to 0 and switches to

kernel mode.

 OS saves the state of the user’s process.

 OS identifies the system call (branch to case

statement in system code).

 Switch to a service routine based on the

associated system call number.

 OS executes the service routine.

 OS restores the state of the user’s process by

loading its parameters from [PCB].

 Switches to the user mode by setting the mode bit.

 Resume executing the user’s process.

SC 1?

SC 2?

SC 3?

Service

Routine 3

Service

Routine 1

Service

Routine 2

Address of SR 1

Address of SR 2

Address of SR 3

Dr. Tarek Helmy, KFUPM-ICS 81

Passing System Call Parameters to the OS

• Three methods are used to pass system call parameters to the OS:-

1. System call parameters stored in registers

• In some cases, may be more parameters than registers

2. System call parameters stored in a block, or table, in memory,

and address of the block passed as a parameter in a register

• This approach taken by Linux and Solaris

3. System call parameters placed, or pushed, onto the stack by

the process and popped off by the OS.

Dr. Tarek Helmy, KFUPM-ICS

The methods to pass parameters between a running program and the OS.

Parameter Passing via Table

Dr. Tarek Helmy, KFUPM-ICS

Example of Standard API

• Consider the ReadFile() system call in the Win32 API for reading from a file

• A description of the parameters passed to ReadFile()

– HANDLE file—the file to be read

– LPVOID buffer—a buffer where the data will be read into and written from

– DWORD bytesToRead—the number of bytes to be read into the buffer

– LPDWORD bytesRead—the number of bytes read during the last read

– LPOVERLAPPED ovl—indicates if overlapped I/O is being used

• What is the reasonable way of passing these parameters to the OS?

Dr. Tarek Helmy, KFUPM-ICS 84

Processes Communication Methods

Message Passing Shared Memory

• Processes communicate with each other using direct message

passing by sending/receiving messages through the OS kernel, or

through shared memory .

Dr. Tarek Helmy, KFUPM-ICS 85

• We have presented till now:

• Definitions of the OSs, Benefits of the OS to users and application programs,

• Computer-System Organization and Operation, Different types of OSs, the Major OS Issues,

Operating System Services, Different views of the OS,

• Main Goals of OS, Supporting of Multi-processing by OS: why?

• Requirements of Multi-processing (HW and SW support), Multiprocessor Systems (Tightly and

loosely coupled, symmetric and asymmetric mode of coupling),

• Distributed vs. Network OSs, Clustered systems, and why do we support clustering?

• Computing models: Client-server, P2P, Grid-computing, Cloud-Computing,

• Fundamental components of the OS; i.e. Process Management, Memory Management, File

Management, I/O Management, Mass-Storage Management, Command-Interpreter,

• Protection & Security components of the OS, (CPU and Memory Protection as hot resources).

• Storage Hierarchy, Consistency and Coherency Definitions and Support by the OS.

• Dual-Mode Operation of the OS, Privileged Instructions,

• Interrupts and Exceptions Definitions.

• Reasons of Interrupts/Exception, Interrupts and Exceptions Handling.

• I/O Handling Methods (Synchronous/blocking and Asynchronous/non-blocking)

• I/O Data Transfer Techniques (Polling, Interrupt, Direct Memory Access)

• System Calls, System Programs, and how to handle a system call?,

• Passing System Call Parameters to the OS, and Processes Communication Methods,

• We are going to present Today:

• Operating system Design Issues, Operating system Design goals,

• Different ways of structuring the operating systems, Operating System Implementation, System

Generation (SYSGEN).

Outline of OS Intensive Introduction Classes

Dr. Tarek Helmy, KFUPM-ICS 86

Operating System Design Issues

• As we have seen, the operating system consists of many components,

so the designers need to think about:

– How do we organize all of them?

– Where do they exist?

– How do they cooperate together?

• Answering these questions is a massive software engineering and

design issue.

• What are the important software characteristics of an OS the designer

should care?

– Correctness, simplicity, and completeness,

– Efficient performance,

– Scalability and portability,

– Suitability for distributed and parallel systems,

– Compatibility with existing systems,

– Security and fault tolerance,

– .. etc.

Dr. Tarek Helmy, KFUPM-ICS 87

More Design Issues

• Flexibility

– It should be easy to add and remove functional modules from the operating
system. This is the idea of microkernel operating system. In a microkernel
operating system, it provides minimal services:

• Inter-Process communications (IPC)

• Some memory management

• A limited amount of low-level process management and scheduling.

• Low-level input/output

– These basic services are provided in kernel just because it is too expensive
to provide them anywhere else.

• Reliability

– With distributed system, it is possible to provide higher reliability because
some nodes can perform functions for the failed nodes.

• Performance

– With distributed systems, one expects better performance.

• Scalability

– The system design should be able to expand to large number of
processors, not just a few.

Dr. Tarek Helmy, KFUPM-ICS 88

OS Design Goals

 The OS is a kind of SW package and has to pass the Software

Development Life Cycle, i.e. Requirements, Design, Implementation,

Integration, Deployment and Maintenance phases.

• The OS design will be affected by the choice of the HW and the type of the

system (Batch OS, Time shared OS, Single user OS, Multi-user OS, Real

time OS, Distributed OS, or what?).

• The first problem in designing the system is to define the goals and

specification of the system.

• User’s goals: OS should be convenient to use, easy to learn, reliable, safe,

multi-purpose, and fast.

• System’s goals: OS should be easy to design, implement, and maintain, as

well as flexible, reliable, error-free, and efficient.

• Next, we will present different ways of structuring the operating systems.

Dr. Tarek Helmy, KFUPM-ICS 89

Monolithic-Based of OS Structure: i.e. Unix

• The monolithic approach defines a high-level virtual interface over the
hardware, with a set of primitives or system calls to implement OS services
such as process management, concurrency, and memory management in
several modules that run in supervisor mode.

• Kernel: Everything below the system-call interface and above the physical
hardware.

– Provides file system, CPU scheduling, memory management, and other
OS functions through system calls.

• Traditional UNIX OS versions were built as a monolithic kernel.

Dr. Tarek Helmy, KFUPM-ICS 90

Monolithic-Based OS Kernels

• Major advantage:

– Cost of module interactions is low (procedure/function/method call)

• Disadvantages:

– Hard to understand,

– Hard to modify or to maintain,

– Unreliable (no isolation between system modules)

• What is the alternative?

– Can we moves some components from the kernel into “user” space to

simplify its design and implementation?

Dr. Tarek Helmy, KFUPM-ICS 91

Microkernel-Based OS Structure

• Moves as much as possible from the kernel into “user” space

• Communication takes place between user’s modules using message passing

– Provides only small number of services

• Attempt to keep kernel small and scalable

– High degree of modularity

• Extensible, portable and scalable

– Increased level of inter-module communication

• Can degrade system performance

• Mac and BSD (Berkeley Standard Distribution) OSs are examples.

Dr. Tarek Helmy, KFUPM-ICS 92

Microkernel-Based OS Structure

• Benefits:

– Easier to extend a microkernel,

– Easier to port the operating system to new architectures,

– More reliable (less code is running in kernel mode),

• Disadvantages:

– Performance overhead of user space to kernel space communication.

Mac OS X Structure

• Can we organize the OS into layers in order to simplify its design and implementation?

Dr. Tarek Helmy, KFUPM-ICS 93

Layering-Based OS Structure

• The layering approach means:

– Implement the OS components as a set of layers,

– All the layers can be defined separately and interact with each other as

required,

– Each layer acts as a ‘virtual machine’ to the layer above.

• Layered Systems

– Layer 1: Responsible for the multiprocessing aspect of the operating system.

It decides which process to be allocated to the CPU (Scheduling). It deals

with interrupts and performs the context switches when a process change is

required.

Dr. Tarek Helmy, KFUPM-ICS 94

Layering-Based OS Structure

– Layer 2: Concerns with allocating memory to processes.

– Layer 3: Deals with inter-process communication and

communication between the OS and the console.

– Layer 4: Manages all I/O between the devices attached to

the computer. This includes buffering information from the

various devices.

– Layer 5: Where the user programs store.

– Layer 6: Where the overall control of the system (called

the system operator).

Dr. Tarek Helmy, KFUPM-ICS 95

Layering Advantages and Disadvantages

• Advantages:

– Each layer can be tested and verified independently,

– Layering eases maintenance, developing, and updating of

system,

– Explicit structure allows identification, relationship of complex

system’s pieces.

• Disadvantages:

• Disjunction between modularity and reality

– Systems modeled as layers, but not really built that way.

• Strict layering isn’t flexible enough

– A layer can communicate only with the lower layer.

• Poor performance

– Each layer crossing has overhead associated with it.

Dr. Tarek Helmy, KFUPM-ICS 96

Modules-Based OS Structure

• A modular operating system is built with its various functions broken up into
distinct processes, each with its own interface.

• Most modern operating systems implement the kernel as modules

– Uses object-oriented approach,

– kernel does not have to implement message passing since
modules/Functions are free to contact each other directly.

– Each core component is separate,

– Each talks to the others over known interfaces,

– Each is loadable as needed within the kernel,

• Overall, similar to layers but with more flexibility

Solaris Modular Approach

Dr. Tarek Helmy, KFUPM-ICS 97

OS Design to support Virtual Machines

• Creating software copies of the processor (the capability to execute

instructions) and the memory (the capability to store information), each

constitutes a Virtual Computer (VC).

• The resources of the physical machine are shared. Virtual devices are sliced

out of the physical ones. Virtual disks are subsets of physical ones.

• Useful for running different OS on the same machine.

• To provide an interface or resource that differs from that of the lower levels.

• Primarily used for cross OS compatibility (portability of code), i.e. Java VM.

• Protection is excellent, but no sharing possible.

Dr. Tarek Helmy, KFUPM-ICS

Java Virtual Machine:

• Mediates between the application and the underlying platform:

• Converts the application’s byte code into machine-level code.

• Handles tasks such as managing the system memory, providing security

against malicious code, and managing multiple threads of program

execution.

• Thus: Compiled Java programs are platform-independent, byte-codes

executed by a Java Virtual Machine (JVM).

• The Java Virtual

Machine allows

Java code to be

portable between

various hardware

and OS

platforms.

Java Virtual Machine: Example

Dr. Tarek Helmy, KFUPM-ICS 99

Advantages/Disadvantages of Virtual Machines

Advantages:

• The virtual-machine concept provides complete protection of

system resources since each virtual machine is isolated from all

other virtual machines.

Disadvantage:

• The isolation, however, permits no direct sharing of resources

which is against sharing of the resources to maximize their

utilization.

• The virtual machine concept is difficult to implement due to the

effort required to provide an exact duplicate to the underlying

machine.

Dr. Tarek Helmy, KFUPM-ICS 10

0

System Implementation

• Traditionally OSs have been written in assembly language and that

means it is available only for that processor’s family.

• Modern OS are often written in Higher-Level Languages such as C, C++,

Java.

• i.e. Unix is written in C and it is available on a different CPUs.

• The advantages of using HLL in writing the OSs are:

– Can be written faster.

– Is more compact.

– Is easier to understand and debug.

– An OS is far easier to port (move to some other hardware) if it is

written in a high-level language.

• The major disadvantages are:

– Reduced speed and increased storage requirements.

• In many OSs the critical modules (CPU scheduling, memory

management) can be written in assembly to improve the performance of

the OS.

Dr. Tarek Helmy, KFUPM-ICS 10

1

System Generation (SYSGEN) Module

• OS is designed to run on any machine; the OS must be configured for each computer,

this process is known as system generation.

• The OS is often distributed on CDs and to generate a system, we use:

• SYSGEN Module obtains information concerning the specific configuration of the

hardware system, it may ask the system operator to define the HW or probes the HW

directly. SYSGEN must determine:

– What type of the CPU? Type of instruction set, floating point arithmetic, ..

– How much memory is available? Some OS will detect the amount of memory by

referencing the memory locations sequentially until getting into illegal address.

– What devices are available? The OS needs to know how to address each device,

the characteristic of the device, etc.

– What OS options are desired? Like how many buffer and of which size should be

set? The type of CPU scheduling algorithm, the maximum no. of process to be

supported? etc.

– Plug and play feature.

• After the OS is generated, it must be available for the use by the HW through:

• Bootstrap program/BIOS: Code stored in ROM that is able to locate the kernel, to load

it into memory, and to start its execution.

• Booting: The procedure of starting a computer by loading the fundamental parts

(kernel) of the OS.

Dr. Tarek Helmy, KFUPM-ICS 10

2

• We’ve completed our intensive introduction of the OS.

• This was a satellite picture about the concepts and principles of the OS.

• From now, we’ll be at the ground level, looking at each component of the

OS in more details.

• We will conduct a quiz soon about the introductory classes of the OS.

Please prepare your self for that.

• Your references for the introductory sessions are:

– Lectures’ slides

– Text book chapters 1, 2 and parts of chapters 3 and 13.

at the end

Dr. Tarek Helmy, KFUPM-ICS 10

3

The End!!

Thank you

Any Questions?

